Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  segmentacja guza
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Brain tumors can be difficult to diagnose, as they may have similar radiographic characteristics, and a thorough examination may take a considerable amount of time. To address these challenges, we propose an intelligent system for the automatic extraction and identification of brain tumors from 2D CE MRI images. Our approach comprises two stages. In the first stage, we use an encoder-decoder based U-net with residual network as the backbone to detect different types of brain tumors, including glioma, meningioma, and pituitary tumors. Our method achieved an accuracy of 99.60%, a sensitivity of 90.20%, a specificity of 99.80%, a dice similarity coefficient of 90.11%, and a precision of 90.50% for tumor extraction. In the second stage, we employ a YOLO2 (you only look once) based transfer learning approach to classify the extracted tumors, achieving a classification accuracy of 97%. Our proposed approach outperforms state-of-the-art methods found in the literature. The results demonstrate the potential of our method to aid in the diagnosis and treatment of brain tumors.
EN
Background: Breast cancer is a deadly disease responsible for statistical yearly global death. Identification of cancer tumors is quite tasking, as a result, concerted efforts are thus devoted. Clinicians have used ultrasounds as a diagnostic tool for breast cancer, though, poor image quality is a major limitation when segmenting breast ultrasound. To address this problem, we present a semantic segmentation method for breast ultrasound (BUS) images. Method: The BUS images were resized and then enhanced with the contrast limited adaptive histogram equalization method. Subsequently, the variant enhanced block was used to encode the preprocessed image. Finally, the concatenated convolutions produced the segmentation mask. Results: The proposed method was evaluated with two datasets. The datasets contain 264 and 830 BUS images respectively. Dice measure (DM), Jaccard measure, and Hausdroff distance were used to evaluate the methods. Results indicate that the proposed method achieves high DM with 89.73% for malignant and 89.62% for benign BUSs. Moreover, the results obtained validate the capacity of the proposed method to achieve higher DM in comparison with reported methods. Conclusion: The proposed algorithm provides a deep learning segmentation procedure that can segment tumors in BUS images effectively and efficiently.
EN
The proposed work develops a rapid and automatic method for brain tumour detection and segmentation using multi-sequence magnetic resonance imaging (MRI) datasets available from BraTS. The proposed method consists of three phases: tumourous slice detection, tumour extraction and tumour substructures segmentation. In phase 1, feature blocks and SVM classifier are used to classify the MRI slices into normal or tumourous. Phase 2 contains fuzzy c means (FCM) algorithm to extract the tumour region from slices identified by phase 1. In addition, graphics processing unit (GPU) based FCM method has been implemented for reducing the processing time which is major overhead with FCM processing of MRI volumes. For phase 3, a novel probabilistic local ternary patterns (PLTP) technique is used to segment the tumour substructures based on the probability density value of histogram bins. Quantitative measures such as sensitivity, specificity, accuracy and dice values are used to analyses the performance of the proposed method and compare with state-of-art-methods. As post processing, the tumour volume estimation and 3D visualization were done for analyzing the nature and location of the tumour to the medical experts. Further, the availability of the GPU reduces the processing time up to 18 than serial CPU processing.
EN
The segmentation of brain tumors in magnetic resonance imaging (MRI) images plays an important role in early diagnosis, treatment planning and outcome evaluation. However, due to gliomas' significant diversity in structure, the segmentation accuracy is low. In this paper, an automatic segmentation method integrating the small kernels two-path convolu-tional neural network (SK-TPCNN) and random forests (RF) is proposed, the feature extrac-tion ability of SK-TPCNN and the joint optimization capability of model are presented respectively. The SK-TPCNN structure combining the small convolutional kernels and large convolutional kernels can enhance the nonlinear mapping ability and avoid over-fitting, the multiformity of features is also increased. The learned features from SK-TPCNN are then applied to the RF classifier to implement the joint optimization. RF classifier effectively integrates redundancy features and classify each MRI image voxel into normal brain tissues and different parts of tumor. The proposed algorithm is validated and evaluated in the Brain Tumor Segmentation Challenge (Brats) 2015 challenge Training dataset and the better performance is achieved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.