To establish the brine chemistry associated with the evaporites in the Pennsylvanian Paradox Basin of southeastern Utah and southwestern Colorado (USA), the composition of primary fluid inclusions was determined for sedimentary halite from two drill cores, one near the central part of the basin (Shafer Dome No. 1) and one from a more marginal location of the basin (Gibson Dome No. 1). Chemical analysis of halite fluid inclusions was done on six samples from three different evaporite cycles of the Paradox Formation; cycle 10 in the Shafer Dome core and cycles 6 and 18 from the Gibson Dome core. The inclusions that range in size from 2 to 80 microns across, were analyzed using the Petrychenko method. Large inclusions (40 to 80 microns across) that were used for the chemical analyses contain one fluid phase with a carnallite or sylvite daughter crystal. Also reported in this study are fluid inclusion homogenization temperatures for sylvite or carnallite from primary halite crystals in the Gibson Dome core and in Shafer Dome. The relationship between K+ and Mg2+ in chloride rich inclusions corresponds to their proportion in MgSO4-depleted marine waters concentrated to the stage of carnallite deposition. A correlative relationship was observed between K+2+4-rich to MgSO4-poor compositions that have been proposed by other workers. A transition from MgSO4-rich to MgSO4-poor seawater composition may have occurred between Pennsylvanian and Permian times. This paper presents a possible alternate explanation to those already proposed in the literature, that the Paradox Formation mineralogy resulted from an intermediate seawater composition that records the global transition from MgSO4-rich to MgSO4-poor seawater.
Evaluation of data sets on inclusion brine compositions in halite from the Phanerozoic marine evaporite deposits used for the reconstruction of ancient seawater chemistry shows that brine analysis of primary inclusions from primary marine halite (in the case of proper genetic type determination) undoubtedly indicate two megacycles in secular variation of seawater chemistry during the Phanerozoic. It is also shown that inside primary halite, inclusions formed at later stages of deposit formation locally occur. Erroneous attribution of such inclusions to primary ones is the main reason for deviations observed in most data sets. It is also obvious that fluid inclusions in clear (recrystallized) halite are unsuitable for the reconstruction of ancient seawater chemistry. Brines from inclusions properly determined as primary in primary bedded halite are micro-droplets of concentrated ancient seawater.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.