Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sea level changes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
South-Eastern coastal plains of India experience some of the major delta formations of the Indian subcontinent majorly affected by fluctuations of the Indian summer monsoon (ISM) and sea level. Past shoreline signatures in the form of palaeo beach ridges in Kaveri delta (Tamil Nadu, India), suggest a wave-dominated delta and thus past sea-level variations affecting directly the sedimentary dynamics of the Kaveri river forcing the river to either aggrade or prograde. Chronostratigraphic and foraminiferal study of the 25 m deep sediment core taken 2.5 km onshore from Tamil Nadu coast, Kaveri delta shows evidence of changing coastline over the last 150 ka. Various units in the core reflect eight major phases of increased sea level (~3.4 ka, ~5.0 ka, 9–6 ka, 60–57 ka, 89–81 ka, ~102 ka,~121 ka and 143–140 ka) partly coinciding with the global climate cycles MIS 1, MIS 3, MIS 5, MIS 6 respectively during the late Quaternary period. During ~121 ka and 9–6 ka, direct signature of marine transgression is observed by the presence of foraminifera in the core location. The study also shows that the sea transgression during ~121 ka was much longer-lasting and higher than during 9–6 ka, even though not revealed in the Quaternary sea level curve given by previous authors. Depositional breaks are observed in the core during periods of lower sea levels as the river responded by incision. Total organic matter of the deposition between 9–6 ka was observed as high as 2.5–6% suggesting oxygen stressed conditions during the period.
EN
Focused on the zonal and meridional response of sea level change to El Niño-Southern Oscillation (ENSO) events, this paper retrieves the overall average, positive anomaly and negative anomaly sea surface height (SSH) series of equatorial Pacific area (EPA) from satellite altimetry data from 1993 to 2013. The barycenter method is then applied to each of the three series to get the zonal and meridional barycenter coordinates. The barycenter coordinates are then compared with the Multivariate ENSO index (MEI) to reveal the zonal and meridional response of sea level change to ENSO. The meridional and zonal spatio-temporal evolutionary processes of sea level change in EPA during different ENSO events are reconstructed by the Principle Tensor Analysis of Rank 3 Method (PTA3). Comparative analysis shows that the meridional change of positive anomalies barycenter, rather than the mean series of sea level height anomaly in EPA, can well characterize the intensity and evolutionary process of ENSO events. Meanwhile, the zonal migration of barycenter may reflect the lag adjustment of the sea level to the ENSO signal. The analysis on the meridional and zonal evolution of the sea level change in different ENSO periods shows that the response of sea level change to the ENSO events can be mainly characterized by the position differences between positive and negative sea level anomaly barycenter, SSH gradient in the meridional direction and the inconsistency in the overall spatial structure and temporal evolution characteristics in the zonal direction.
EN
Tragophylloceras cf. loscombi (Sowerby) has been found in the Kaszewy 1 borehole (central Poland), in the Upper Pliensbachian strata (Margaritatus Zone, Subnodosus Subzone), assigned to the Drzewica Formation. Hitherto, all ammonite finds in the epicontinental Lower Jurassic in Poland have been restricted to Western Pomerania (NW Poland). This find points to a wider extent of the transgressive event occurring in the late Margaritatus Zone, following widespread regression at the beginning of this zone. Rapid and pronounced sea level changes in the early Late Pliensbachian confirms the hypothesis linking these changes with glacioeustasy.
4
Content available remote The Jurassic of Germany
EN
A geological map of Germany showing the distribution of Jurassic rocks is presented together with an updated and revised lithostratigrahic scheme for the Jurassic succession of this area. Geological map and important outcrops The Jurassic of Northern Germany crops out as a narrow band between the town of Osnabrück and the Harz Mountains. This visible part is only one percent, the other 99 percent lie in the subsurface and have an extension of over 100,000 km2. The Jurassic of Southern Germany is nearly half as large but much better exposed in the Swabian and Franconian Albs with very important fossil localities (Holzmaden, Solnhofen). Other areas are near Trier and in the Rhine Valley between Mannheim and Basel. The main subsurface data came from over 100,000 boreholes or shafts, which have sunk for the extensive exploitation of oil, gas, salt, iron ore, caverns/disposal sites, radioactive waste disposal or water. Borehole measurements, cores and drill cuttings provided an immense quantity of data as well as on about 500,000 km of reflection seismic lines of different quality. Stratigraphic Table The Jurassic lithostratigraphic scheme is based on the Stratigraphic Table of Germany 2002 (Mönning et. al. 2002). Here the Jurassic is represented by two abstracted and schematised cross sections from west to east. In contrast to this several troughs are considered in more detail. The Jurassic of Northern Germany is situated within the North German Depression representing the central part of the Middle European Depression. It is an area of long-term subsidence and sediment accumulation. From the Late Triassic the basin was subdivided into NW to WSW-ESE striking troughs and swells as a result of halokinetic movements. Where salt accumulated, it pushed upwards as diapirs, leading in the Middle Jurassic to widespread erosion. In southern Germany Jurassic deposits are less thick but more constant in facies development. The lithostratigraphic subdivision of the Jurassic deposits of southern Germany into Schwarzer Jura, Brauner Jura and Weißer Jura is undoubtedly fixed since Quenstedt (1843). The Norddeutscher Jura (Northern German Jurassic Super Group) does not exactly correspond to the Jurassic System and extends from the Hettangian to the Lower Berriasian. (Mönnig et al. 2002). Here the terms Lias, Dogger and Malm has been used since a long time as lithostratigrapic units leading to some confusion. For example the Malm-Gruppe (Gramann et al. 1997) does not correspond exactly with the Upper Jurassic Subsystem (Malm). It excludes the upper Ornaten-Ton Fm. (Lower Oxfordian) and includes the upper Münder Fm (Lower Berriasian). It is proposed to enclose the word Norddeutsche to the terms Lias-, Dogger- and Malm-Gruppe to emphasise the lithostratigraphic character. In connection with the revision of the existing lithostratigraphic nomenclature, sequence stratigraphic analysis is seen as valuable additional tool for a better understanding of the complex geological settings. Even though no detailed investigation has been done till today, it is clear that the marine Jurassic is represented by cyclically arranged mudstones, sandstones, limestones and ironstones and that sedimentation was strongly influenced by sea-level changes in combination with tectonic activities and salt movements. It was possible to subdivide the German Jurassic into 22 regressive-transgressive cycles.
5
Content available remote Paleolimnology in uruguay - a personal perspective
EN
Paleolimnological research only started in Uruguay in 1999 in the frame of the German-Uruguayan Academic Cooperation Program (DAAD-UDELAR). Research focused in costal lagoons and special attention was paid to the relationship between trophic development and sea level changes. Paleolimnology was also used as tool to assess human impact on aquatic water bodies and to provide a basis for the development of a management plan. Concomitantly, diatom taxonomy was also developed as diatoms are very well established indicators of paleoenvironmental change. In this sense, about 70 diatom species have been described as new for science.
6
Content available The epicontinental Lower Jurassic of Poland
EN
During the Early Jurassic times terrigenous, continental, marginal-marine and marine sediments up to 1400 m in thickness were deposited in a large epeiric basin extending across Poland. These strata are defined herein as the Kamienna Group, which is subdivided into 13 newly distinguished or re-defined lithoformations (Fm.). Two new members (Mb.) are also defined. Detailed study of exposures and 35 fully cored boreholes has integrated data from lithology, sedimentary structures, trace fossils, body fossils, boron content, clay minerals and palynology. This has allowed lithofacies description, recognition of depositional systems and subsystems and determination of their fluctuation in space and time leading to a high-resolution sequence stratigraphic analysis. Sedimentation in the shallow, epeiric Early Jurassic basin of Poland was particularly sensitive to reflect changes in sea level. Analyses of accommodation space within regular progradational successions associated with highstand systems tracts shows that the Early Jurassic basin in Poland was generally not deeper than some tens of meters, most frequently it was less than 20 m deep. Except for the ammonite-bearing Pliensbachian deposits in Western Poland, biostratigraphical resolution in marginal-marine and continental deposits is usually of a lesser precision. However, an internally consistent sequence stratigraphic scheme of Poland can be compared with fossiliferous marine sediments of the Ligurian cycle of United Kingdom and France. The minor sequences identified within the Ligurian cycle play very important role in correlation as they can be recognised in the Polish Basin, although they may show some differences in dating and range. In the Polish Basin, lowstand (LST) and falling stage systems tract (FSST) correspond with erosion/non deposition stages at the sequence boundaries. Concerning the range of sea level changes, the Exxon model was also adopted and ten of the Exxon Early Jurassic depositional sequences were identified in the Polish Lower Jurassic and are labelled I-X. Transgressive systems tracts prevail in sedimentary record and are represented either by retrogradational or aggradational facies architecture, and high-stand systems tracts are represented by progradational facies architecture. Parasequence boundaries (flooding surfaces) were defined based on careful regional/spatial facies analysis. A marginal-marine parasequence is usually more complex than a simple "quick flooding-gradual prograding" model, conventionally interpreted in the marine basins. Due to common preservation of transgressive deposits within marginal-marine parasequences, besides the well-defined flooding surfaces the "parasequence maximum flooding surfaces" were distinguished. The best correlative horizons, particularly in the basin centre, are represented by sequence boundaries, while the maximum flooding surfaces or their correlatives are well identifiable in the marginal parts of the basin. Intensity and frequency of erosional processes in the marginal parts of the basin mean that depositional sequence boundaries are difficult to recognise because of "amalgamation" of stacked and highly reduced depositional sequences. Correlative significance is of transgressive surfaces is enhanced when they are coupled with their nonmarine correlative surfaces. Development of transgression with its coeval effects in continental deposits is discussed and non-marine correlative surfaces of the transgressive surfaces are documented. Once recognised and arranged, sequences and parasequences in the marginal basins (like the Polish Basin) can help to solve some problems concerning identification and range of major bounding surfaces and systems tracts in open marine basins in Europe, particularly in the Early Toarcian. The regional cross sections and cross sections of the whole Polish Basin showing dominant depositional systems and sequence stratigraphic correlation, as well as "time"tuned" palaeogeographical maps of the Polish Basin in Early Jurassic are presented. Subsidence varied through time along the Mid-Polish Trough, between the Holy Cross Mts and Pomerania. In Hettangian and Late Sinemurian the subsidence rate was higher in the Holy Cross Mts and lower in Pomerania region, while in Early Sinemurian and Early Pliensbachian times the situation was opposite. Despite existence of some regional dislocation zones occurring along the edges of the Mid-Polish Trough, which shaped the sedimentation and sediment thickness contrast (for example the Nowe Miasto-Iłża fault), a gradual decrease of sediment thickness outwards the axis of the Mid-Polish Trough prevails. Additionally, occurrence of conspicuous zones of increased subsidence, which are actually perpendicular to the Mid-Polish Trough (for example the "Mazurian Way"), there is no reason to regard the Mid-Polish Trough in any respect as a "rift basin", at least in the Early Jurassic times.
PL
We wczesnej jurze, w rozległym epikontynentalnym basenie rozciągającym się na obszarze Polski, osadziło się do 1400 metrów utworów terygenicznych pochodzenia lądowego, marginalno-morskiego i morskiego. Utwory te są zdefiniowane w niniejszej pracy jako Grupa Kamiennej (Gr.), która została podzielona na 12 nowo wyróżnionych lub zredefiniowanych litoformacji (Fm.). Wyróżniono też dwa nowe ogniwa (Mb.). Szczegółowe badania obejmujące dane litofacjalne, petrologiczne, ichnologiczne, paleontologiczne, geochemiczne i palinologiczne przeprowadzono w odsłonięciach i 35 pełnordzeniowanych otworach wiertniczych. Pozwoliły one na wyróżnienie litofacji, interpretację systemów i subsystemów depozycyjnych oraz ich czasoprzestrzennej zmienności, a następnie na przeprowadzenie wysokorozdzielczej analizy sekwencyjnej. Wczesnojurajska sedymentacja w płytkim, epikontynentalnym basenie Polski w sposób szczególnie wyraźny odzwierciedlała zmiany poziomu morza. Analiza przestrzeni akomodacji depozycyjnej w obrębie regularnych sukcesji progradacyjnych ciągów systemowych stabilizacji wysokiego poziomu morza (HST) wskazuje, że głębokości wczesnojurajskich zbiorników sedymentacyjnych Polski nie przekraczały wartości rzędu kilkudziesięciu metrów, a najczęściej były to głębokości maksymalnie do 20 metrów. Z wyjątkiem morskich utworów pliensbachu na Pomorzu, które zawierają amonity, podział biostratygraficzny marginalno-morskich i lądowych utworów dolnej jury charakteryzuje się na ogół słabą rozdzielczością. Mimo to, spójny podział stratygraficzno-sekwencyjny dolnej jury w Polsce pozwala na jego porównanie ze schematami sporządzonymi dla bogatych w skamieniałości przewodnie utworów dolnej jury cyklu liguryjskiego w Wielkiej Brytanii i Francji. Zwłaszcza sekwencje krótkookresowe wyróżnione w obrębie tego cyklu są przydatne w korelacji sekwencji, ponieważ są one rozpoznawalne w basenie polskim. Ciągi systemowe niskiego poziomu morza (LST) i ciągi systemowe opadającego poziomu morza (FSST) odpowiadają czasowo w basenie polskim lukom związanym z erozją lub brakiem depozycji na granicach sekwencji. Jeśli chodzi o skalę zmian poziomu morza, również model Exxon Research Group okazał się przydatny do przeprowadzenia korelacji, a dziesięć "exxonowskich' sekwencji depozycyjnych (I-X) zostało wyróżnionych w obrębie utworów dolnojurajskich basenu polskiego. W zapisie osadowym dominują utwory transgresywnych ciągów systemów i są one reprezentowane zarówno przez retrogradacyjne jak i agradacyjne sukcesje facjalne. Utwory ciągów systemowych stabilizacji wysokiego poziomu morza odpowiadają wyłącznie progradacyjnym, regresywnym sukcesjom facjalnym. Granice parasekwencji w obrębie sekwencji depozycyjnych zostały zdefiniowane na podstawie dokładnej czasoprzestrzennej analizy facjalnej w poszczególnych regionach. Parasekwencje marginalno-morskie mają na ogół bardziej złożoną architekturę depozycyjną, niż przyjmowano do tej pory w prostym schemacie szybkiego zalewu i stopniowej, powolnej progradacji. Konieczne było wyróżnienie powierzchni maksymalnego zalewu dla poszczególnych parasekwencji, występują one w różnych odległościach od powierzchni zalewu będących dolnymi granicami parasekwencji. Najlepszymi powierzchniami korelacyjnymi w centrum basenu są granice sekwencji, podczas gdy w obszarach marginalnych najłatwiej wyróżnić powierzchnie maksymalnego zalewu i ich odpowiedniki. W marginalnych partiach basenu sedymentacyjnego częstotliwość i intensywność erozji oraz niewielka subsydencja powodowały często nakładanie się na siebie poszczególnych sekwencji i ich granic, co utrudnia ich wyróżnianie i korelację. Dokładność korelacji powierzchni transgresji zwiększa się, kiedy są one skorelowane z ich lądowymi odpowiednikami. Udokumentowano szczegółowo rozwój transgresji i efekty tego procesu na sąsiadujących obszarach lądowych i podano kryteria wyróżniania niemorskich, korelatywnych odpowiedników powierzchni transgresji. Określona w polskim basenie sedymentacyjnym sukcesja sekwencji i parasekwencji może być pomocna w rozwiązywaniu problemów związanych z identyfikacją i zasięgiem głównych granic korelacyjnych i ciągów systemowych w pełnomorskich, głębszych basenach Europy, co szczególnie przydatne okazało się dla utworów wczesnego toarku. Wykonano regionalne oraz ogólnopolskie przekroje stratygraficzno-sekwencyjne basenu wczesnojurajskiego w Polsce wraz z mapami sporządzonymi dla konkretnych, czasowych powierzchni korelacyjnych, które przedstawiają zmienność czasowo-przestrzenną dominujących systemów depozycyjnych. Tempo subsydencji wzdłuż bruzdy środkowopolskiej zmieniało się w czasie, wykazywało też fluktuacje regionalne - w hetangu i późnym synemurze tempo subsydencji w segmencie świętokrzyskim bruzdy śródpolskiej było większe niż w segmencie pomorskim, a we wczesnym synemurze i wczesnym pliensbachu sytuacja była odwrotna. W pliensbachu i toarku zaznaczały się strefy zwiększonej subsydencji usytuowane prostopadle do rozciągłości bruzdy śródpolskiej (tak zwana "droga mazurska"). Wzdłuż krawędzi bruzdy istniały regionalne strefy dyslokacyjne, wywierające wpływ na sedymentację i kontrast miąższości (np. strefa Nowe Miasto-Iłża). Biorąc jednak pod uwagę na ogół stopniowe zmniejszanie się miąższości osadów na zewnątrz od osi bruzdy i wspomniane strefy zwiększonej subsydencji prostopadłe do osi bruzdy śródpolskiej, nie można w żaden sposób wiązać wczesnojurajskiego etapu rozwoju bruzdy śródpolskiej z procesami ryftowania.
EN
In the area of the southern Baltic Sea, the largest and most violent changes in water level took place in Late Glacial and Early Holocene, during the period between 13.0-8.5 ka BP. These changes depended on the varied glacio-isostatic movements between the northern and southern parts of the Baltic Sea, the glacio-eustatic increase in the ocean level and the closing or opening of the connection between the Baltic Sea basin with the ocean. During the Late Glacial and Early Holocene, the sea level changed within an amplitude as wide as 25-27 m. In some extreme cases, the sea level could have fallen at a rate of about 100-300 mm/a, the sea level rise rate reaching up to about 40-45 mm/a. In Late Glacial and Early Holocene, there were three transgressions: during 12.0-11.2, 11.0-10.3 (the Baltic Ice Lake) and 10.2-9.2 ka BP (the Yoldia Sea and the Ancylus Lake). There were also three regressions, setting on 11.2, 10.3 and 9.2 ka BP. During regressions, depending on the real drainage rate and the local gradient of the bottom inclination, the land possibly grew at a rate of 0.3 to 4 km per year. During transgressions, rate of shoreline migration could reach in some cases up to 150-200 m per year. These processes took place on the surface of the sea bottom currently located at the depth of c. 55 to 25 m below sea level and from 30 to 60 km away from the present-day southern coast of the Baltic Sea. Rapid changes of shoreline position are recorded in progradational barrier structures and in the erosion surfaces of the glacial till and glacio-marine clays.
EN
The relative sea level curve was developed for the southern Baltic area, based on a set of 314 radiocarbon datings of different terrestrial and marine sediments, collected at 163 sites located in the Polish part of the Southern Baltic and in the adjacent coastal land area. When developing the curve, relicts of various formations related to the shoreline evolution as well as extents of erosional surfaces, determined from seismoacoustic profiles, were taken into account. During Late Pleistocene and Early Holocene, i.e. between 13.0 and 8.5 ka BP, the southern Baltic sea level rose and fell three times, the amplitude of changes extending over 25-27 m. In some extreme cases, the sea level was falling at a rate of up to about 100-300 mm/a, the rate of rise accelerating to about 35-45 mm/a. In the Late Boreal, c. 8.5 ka BP, the Baltic - its water level by about 28 m lower than the present one - became permanently connected with the ocean. Until the onset of the Atlantic, the sea level had risen to about 21 m below the present sea level (b.s.l.). During 8.0-7.0 ka BP, the sea level was rising, at a rate of about 11 mm/a, to reach 10 m b.s.l. Subsequently during the Atlantic, until its end, the sea level rose to 2.5 m b.s.l., the rate of rise slowing down to about 2.5 mm/a. During the first millenium of the Subboreal, the sea level rose to about 1.3-1.1 m b.s.l., to become - on termination of the Subboreal - about 0.6-0.7 m lower than present. During the Subatlantic, the sea level changes were slight only. The glacio-isostatic rebound began c. 17.5 ka BP, to terminate c. 9.2-9.0 ka BP. The total uplift during that time amounted to about 120 m. The maximum uplift rate of about 45 mm/a occurred c. 12.4-12.2 ka BP. Within the period of c. 9.0 to c. 7.0 ka BP, the southern Baltic experienced forebulge migration, a subsequent subsidence ensuing from c. 7.0 to c. 4.0 ka BP. As from c. 4.0 ka BP, the Earth crust in the area regained its equilibrium. In Late Pleistocene and Early Holocene, the southern Baltic shoreline displaced rapidly and substantially several times, the displacement rate ranging from several tens of metres to a few kilometres per year. The displacement processes involved the seafloor surfaces located at present at 25 to 55 m b.s.l., the shoreline migrating over distances of 30-60 km away from the present coastline. In Middle Holocene, the shoreline moved southwards over a distance ranging from about 60 km in the Pomeranian Bay to about 5 km in the Gulf of Gdańsk. The shoreline location approached the present one at the final phase of the Atlantic. Late Holocene was the period when coast levelling processes were prevailing, the shoreline becoming gradually closer and closer to its present setting.
PL
Krzywą względnych zmian poziomu morza skonstruowano na podstawie 314 dat radiowęglowych osadów pochodzących z różnych środowisk lądowych i morskich. Próbki do datowań pobrano z 163 stanowisk zlokalizowanych na obszarze polskiej części południowego Bałtyku i przyległej strefy brzegowej. Przy konstruowaniu krzywej wykorzystano również relikty różnych form związanych z rozwojem strefy brzegowej oraz zasięgi powierzchni erozyjnych, zlokalizowane na profilach sejsmoakustycznych. W późnym plejstocenie i wczesnym holocenie, między 13,0 i 8,5 tys. lat BP, poziom wody trzykrotnie wzrastał i opadał, a zakres wahań dochodził do 25-27 m. Poziom wody obniżał się w skrajnych przypadkach w tempie do ok. 100-300 mm/rok, a tempo wzrostu dochodziło do ok. 35-45 mm/rok. W późnym boreale, ok. 8,5 tys. lat BP, Bałtyk uzyskał stałe połączenie z oceanem na poziomie niższym od obecnego o ok. 28 m. Do początku okresu atlantyckiego poziom morza wzrósł do ok. 21 m poniżej współczesnego poziomu morza (p.p.m.). W okresie 8,0-7,0 tys. lat BP poziom morza wzrósł do 10 m p.p.m., w średnim tempie ok. 10 mm/rok. Do końca okresu atlantyckiego poziom morza wzrósł do 2,5 m p.p.m., a tempo wzrostu zmalało do ok. 2,5 mm/rok. W pierwszym tysiącleciu okresu subborealnego poziom wody wzrósł do ok. 1,1-1,3 m, a do końca tego okresu do ok. 0,6-0,7 m niższego niż współczesny. W okresie subatlantyckim średni poziom morza zmienił się już nieznacznie. Przebudowa glaciizostatyczna rozpoczęła się ok. 17,5 tys. lat BP i zakończyła ok. 9,2-9,0 tys. lat BP. Całkowity zakres podniesienia (total uplift) w tym okresie wyniósł ok. 120 m. Maksimum prędkości ruchów wznoszących, dochodzące od ok. 45 mm/rok, wystąpiło w okresie ok. 12,4-12,2 tys. lat BP. W okresie od ok. 9,0 do ok. 7,0 tys. lat BP przez obszar południowego Bałtyku migrowało nabrzmienie brzeżne, a w okresie od ok. 7,0 do ok. 4,0 tys. lat BP wystąpiły ruchy obniżajace. Od ok. 4,0 tys. lat BP położenie skorupy ziemskiej wróciło do stanu równowagi. Linia brzegowa południowego Bałtyku w późnym plejstocenie i wczesnym holocenie kilkukrotnie uległa szybkim i znacznym przemieszczeniom. Zmieniła położenie w tempie od kilkudziesięciu metrów do kilku kilometrów rocznie. Procesy te rozgrywały się na powierzchni dna morskiego położonej obecnie na głębokości od ok. 55 do 25 m p.p.m. i w odległości 30-60 km od dzisiejszego wybrzeża. W środkowym holocenie linia brzegowa przemieściła się ku południowi od ok. 60 km w Zatoce Pomorskiej do ok. 5 km w Zatoce Gdańskiej. Położenie linii brzegowej zbliżyło się do współczesnego w końcu okresu atlantyckiego. W późnym holocenie dominowały procesy wyrównywania wybrzeży, a linia brzegowa stopniowo zbliżała się do obecnego położenia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.