Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  scaling factor
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effects of chloride concentration, creviced scaling factor and immersion time on the percentage area and maximum depth of attack for Type 304 stainless steel (SS304) in chloride solutions were investigated. The crevice assembly comprised of coupon (SS-304), polytetrafluoroethylene (crevice former) and fasteners (titanium bolt, nut and washers). The full immersion tests were based on ASTM G-78 using full factorial design to study the effects of chloride concentration (1.5, 3.0 and 4.5 w/w%), crevice scaling factor (8, 16 and 24) and immersion time (15, 30 and 45 days) on the percentage area of attack (Y1) and maximum depth of attack (Y2) of SS-304. Data obtained was used to develop and optimize the models of Y1 and Y2 in terms of the three factors using Response Surface Methodology (RSM). The R2 of Y1 and Y2 were 0.98 and 0.91, respectively. The minimum Y1 (5.63%) and Y2 (3.32×10−7 mm) were obtained at 4.5% chloride concentration, 20 scaling factor and 15 days immersion time. The predicted optimal conditions agreed with the experimental results for validation with a maximum absolute relative error of 5.75%.
EN
A scaling technique of numbers in residue arithmetic with the flexible selection of the scaling factor is presented. The required scaling factor can be selected from the set of moduli products of the Residue Number System (RNS) base. By permutation of moduli of the number system base it is possible to create many auxiliary Mixed-Radix Systems (MRS). They serve as the intermediate systems in the scaling process. All MRS's are associated with the given RNS with respect to the base, but they have different sets of weights. For the scaling factor value resulting from the requirements of the given signal processing algorithm, the suitable MRS can be chosen that allows to obtain the scaling result in most simple manner.
EN
It is nesessary to tune the fuzzy rules and the scalling factors in real-time control of a large scale system, the steam generator of a nuclear power plant, as it is related to safety and availability of the plant. A novel real-time tuning algorithm of fuzzy controller based on the scaling factors is proposed and applied to the steam generator water level control system of the nuclear power plant. The new real-time tuning algorithm adopts a variable reference tuning index for a good system tuning response and an instantaneous system fuzzy performance for scaling factor tuning. For the fuzzy steam generator controller, an image signal of feedwater flow error at low power is proposed and pressure compensation rules and a gain scheduler of feedwater temperature are designed also. The fuzzy controller of the steam generator water level is simulated by the proposed method. The simulation results show that the improved performance of the steam generator water level controller by the proposed method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.