Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  saturated porous medium
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An analytical study for the creeping flow of a couple stress fluid past a cylinder embedded in a porous medium is presented using the slip condition. The uniform flow is considered far away from a cylinder. The boundary conditions used are zero couple stress and tangential slip conditions. The modified Bessel functions represent the stream function (the velocity). The drag exerted on a solid cylinder immersed in a porous medium is derived. The impacts of the couple stress, permeability, and slip parameters on the normalized drag force are presented graphically. The drag forces of well-known exceptional cases are reduced. The drag force is a decreasing function of the permeability and couple stress parameters and an increasing function of the slip parameter.
EN
This paper concerns the analytical investigation of the axisymmetric and steady flow of incompressible couple stress fluid through a rigid sphere embedded in a porous medium. In the porous region, the flow field is governed by Brinkman’s equation. Here we consider uniform flow at a distance from the sphere. The boundary conditions applied on the surface of the sphere are the slip condition and zero couple stress. Analytical solution of the problem in the terms of stream function is presented by modified Bessel functions. The drag experienced by an incompressible couple stress fluid on the sphere within the porous medium is calculated. The effects of the slip parameter, the couple stress parameter, and permeability on the drag are represented graphically. Special cases of viscous flow through a sphere are obtained and the results are compared with earlier published results.
EN
The present paper deals with the free convection laminar boundary layer flow and heat transfer of an incompressible, electrically conducting, viscous fluid through a porous medium caused by stretching a porous wall in the presence of a heat source and under the influence of uniform magnetic field. Exact solutions of the basic equations of momentu m and energy ar e obtained after reducing them i n to non-linear ordinary differential equations and using confluent hypergeometric functions. The variations in the velocity field and temperature distribution with the Prandtl number (Pr), hydromagnetic parameter (M), permeability param eter (K), suction parameter (N), wall temperature parameler (S), and the heat sink parameter (Q) are obtained and depicted graphically. The skin-friction at the wall is also derived, and the numerical values for various physical parameters are also tabulaled. Magnetic field (M) is seen to reduce both longitudinal and translational velocities and also lower temperalures, aiding in controlling momentum and heat transfer during materiaIs processing. Suction (N) posivitely influences the transverse velocity but depresses the longitudinal velocity magnitudes as we II as decreasing tempcratures. Suction therefore also assists in controlling heat transfer in Ihe boundary layer. Increasing permeability parameter (K) depresses the longitudinal velocity but elevates transverse velocities and increases the skin friction at the wall. Both rising temperature (non-isothermal wall) parameter (S) and heat sink parameter (Q) decrease temperature values. The model finds applications in nucIear engineering control systems and MHD energy systems.
EN
The onset of surface-tension-driven convection is studied in a two-layer system comprising an incompressible fluid-saturated porous layer over which lies a layer of the same fluid. The lower rigid surface of the porous layer is either perfectly heat conducting or insulating, while the upper heat insulating fluid boundary is free and at which the surface tension effects are allowed for. At the contact surface between the fluid-saturated porous medium and the adjacent bulk fluid, both Beavers-Joseph and the Jones conditions are employed. The resulting eigenvalue problem is solved exactly. Besides, analytical expression for the critical Marangoni number is obtained for insulating boundaries by using regular perturbation technique. The effect of variation of different physical parameters on the onset of Marangoni convection is investigated in detail. It is found that the parameter ..., the ratio of the thickness of the fluid layer to that of the porous layer, has a profound effect on the stability of the system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.