Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  satellite based augmentation system (SBAS)
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To date, a ship’s position can generally be obtained from functional satellite navigation systems (SNS), such as Global Position Systems (GPS and GLONASS), and Satellite-Based Augmentation Systems (SBAS), such as (European Geostationary Navigation Overlay Service (EGNOS), GPS-Aided Geo Augmented Navigation system (GAGAN), MTSAT Satellite Augmentation System (MSAS) and Wide Area Augmentation System (WAAS). Sometimes these systems are collectively called Global Navigation Satellite Systems (GNSS). Two more SNS, Galileo and BeiDou, one more SBAS, System for Differential Corrections and Monitoring (SDCM), and new regional systems, such as Quasi-Zenith Satellite System (QZSS) in Japan and Indian Regional Navigation Satellite System (IRNSS) in India, are also under construction. Information about all of these 11 systems is available on the internet. The number of links and the type of the information obtained from two search engines, Google and Bing, for the different keywords concerning each system are shown in the paper. Additionally, the analysis of the character and usefulness of the information placed on the pages of governmental organizations and institutions administering the above-mentioned systems, manufacturers of the satellites, receivers and different kinds of the institutional users is also provided.
PL
Opisano szczegóły częściowej integralności systemu GPS, problem integralności systemów GLONASS i SDCM, proponowane rozwiązania tego problemu w nowo budowanych systemach Galileo i BeiDou oraz nowe techniki, takie jak ARAIM czy też integralności mulitsystemowej.
EN
The details of the partial integrity of GPS system, the integrity problem of GLONASS and SDCM systems, the proposition of the solution of the integrity problem in the systems under construction Galileo and BeiDou, new technologies as ARAIM or multisystem integrity are described in this paper.
EN
This paper presents original researches and analysis of EGNOS (European Geostationary Navigation Overlay Service) due to readiness for Approach Procedures with Vertical Guidance (APV) implementation and development for small and medium airports on Polish territory according to present situation in the western part of Europe. Improving safety, availability, usefulness and cost-effectiveness for aviation transport sector. This work carries out a detailed analysis of the parameters describing and characterizing each augmentation navigational satellites system: accuracy, integrity, continuity and availability. Faults has been pointed out and shortcomings of EGNOS factors according to improvement air transport safety in the most sensitive landing phases. The validated Approach Procedures with Vertical Guidance, using Satellite-Based Augmentations System is paving the way for flying Instrument Landing System type approaches to small and medium airports in the western part of Europe independently of groundbased infrastructure. The instrument APV procedures consists of four phases of flight: Initial Approach, Intermediate Approach, Final Approach and Missed Approach – parts of approach segments. SBAS (Satellite Based Augmentation System) seems to be the first satellite based system that can support FAS (Final Approach Segment) which is the most “sensitive”, important and dangerous part of the instrumental approach procedures based on aircraft’s avionics equipment most time without vertical and horizontal visibility. EGNOS augments the GPS system in order to meet the necessary: accuracy, integrity, availability, continuity envisaged for APV procedures [9]. APV procedure based on EGNOS system is recently the only low-cost chance for small and medium Polish airports development in the aviation transport sector, according to extension and improving augmentation system factors mentioned above.
PL
W artykule przedstawione zostały oryginalne badania i analiza system EGNOS (European Geostationary Navigation Overlay Service) w odniesienu do implementacji i rozwoju Procedur Podejścia do Lądowania z Prowadzeniem Pionowym w małych i średnich portach lotniczych na terenie Polski, biorąc pod uwagę stan w Europie Zachodniej. Poprawiając tym samym bezpieczeństwo, dostępność, użytkowość i koszty eksploatacji w sektorze transport powietrznego. Praca ta przedstawia dokładną analizę czynników opisujących każdy system wspomagania satelitarnego: dokładność, wiarygodność, ciągłość I dostępność. Niedoskonałości systemu zostały przedstawione w odniesieniu do poprawy bezpieczeństwa transportu powietrznego w najdelikatniejszej fazie lotu – podejścia do lądowania. Powyższa procedura z wykorzystaniem system wspomagającego otwiera szansę rozwoju małym i średnim portom lotniczym w Europie Zachodniej uniezależniając podejście do lądowania od infrastruktury lotniskowej. Podejście instrumentalne APV składa się z czterech faz lotu: Podejście Początkowe, Podejścia Pośredniego, Podejścia Końcowego, Odlotu po Nieudanym Podejściu. System wspomagania satelitarnego, jako pierwszy wspomóc może także fazę Podejścia Końcowego, która jest najniebezpieczniejszą, najważniejszą fazą opartą na urządzeniach pokładowych w większości bez widoczności terenu. EGNOS wspomaga działanie GPS poprawiając niezbędne czynniki: dokładność, wiarygodności, dostępności, ciągłości przewidzianych w procedurach APV. Podejście oparte o EGNOS jest jedyną, niedrogą szansą dla małych i średnich polskich portów lotniczych, na rozwój w sektorze transportu powietrznego w nawiązaniu do rozszerzenia i poprawy czynników wyżej wymienionych. Słowa kluczowe: EGNOS, Satelitarne
PL
Opisano szczegóły modernizacji dwóch nawigacyjnych systemów satelitarnych (NSS), GPS i GLONASS, zmiany w ich segmencie kosmicznym i naziemnym, dwa NSS, Galileo i BeiDou, znajdujące się w budowie, dwa nowe satelitarne systemy wspomagające (SBAS), SDCM i GAGAN. Omówiono problem kompatybilności i międzyoperacyjności wszystkich tych systemów, w szczególności trzech parametrów - sygnałów emitowanych przez satelity, czasów systemów i układów odniesienia współrzędnych. Przedstawiono również perspektywy stworzenia w przyszłości globalnego nawigacyjnego systemu satelitarnego GNSS.
EN
The details about two Satellite Navigation Systems (SNS), GPS and GLONASS modernization progressing, the changes in their spatial and terrestrial segments, two new global SNS, Galileo and BeiDou under construction, two new Satellite Based Augmentation Systems (SBAS), SDCM and GAGAN, the problem of compatibility and interoperability of all these systems, in particular three parameters - signal in space, system time and coordinate reference frame, and finally the perspectives of future Global Navigation Satellite System (GNSS) are described in this paper.
EN
In SBAS (satellite‐based augmentation system), it is important to estimate ionospheric delay accurately to guarantee userʹs accuracy and integrity. Grid based ionospheric models are generally used to estimate ionospheric delay for SBAS. In grid based model, SBAS broadcasts vertical ionospheric delays at the grid point, and users get their ionospheric delay by interpolating those values. Ionospheric model based on spherical harmonics function is another method to estimate ionospheric delay. This is a function based approach and spherical harmonics function is a 2‐D fourier series, containing the product of latitude dependent associated Legendre functions and the sum of the longitude dependent sine and cosine terms. Using ionospheric delay measurements, coefficients for each spherical harmonics functions are estimated. If these coefficients are known, user can reconstruct ionospheric delay. In this paper, we consider the spherical harmonics based model and propose a ionospheric delay estimation strategy for SBAS that can be used to mitigate ionospheric delay estimation error, especially in storm condition. First, coefficients are estimated under initial order and degree. Then residual errors for each measurement are modeled by higher order and degree terms, then coefficients for these terms are estimated. Because SBAS message capacity is limited, in normal condition, initial order terms are only used to estimate ionospheric delay. If ionospheric storm is detected and there is need to mitigate the error, higher order terms are also used and error can be decreased. To compare the accuracy of spherical harmonics based model with grid based model, some post‐processing test results are presented. Raw observation data is obtained from RINEX format and the root mean square(RMS) and max value of residual errors are presented.
PL
Satelitarne systemy wspomagające (SBAS) opierają się na wielkoobszarowym rozmieszczeniu stacji referencyjnych śledzących i gromadzących dane z satelitów systemów nawigacyjnych, obecnie jedynie systemu GPS. Dane te są przekazywane do stacji głównych SBAS w celu określenia wiarygodności i obliczenia poprawek różnicowych wszystkich śledzonych satelitów. Informacje o wiarygodności i poprawkach przez naziemną stację korygującą są przesyłane do satelity geostacjonarnego wraz z depeszą nawigacyjną. Obecnie w petni operacyjne są trzy SBAS - EGNOS (Europa), WAAS (USA) i MSAS (Japonia), dwa kolejne SBAS - SDCM (Rosja) i GAGAN (Indie) są w trakcie budowy. W artykule scharakteryzowano i porównano wszystkie te systemy.
EN
Satellite Based Augmentation Systems (SBAS) consist of widely dispersed reference stations that monitor and gather data on the satellite navigation systems, actually GPS system only. These data are forwarded to the SBAS master stations for processing to determine the integrity and differential corrections for each monitored satellite. The integrity information and correc-tions are then sent to a ground Earth station and uplinked to a geostationary satellite, along with navigation message. Actually three SBABs arę fully operational - the EGNOS (Europe), the WAAS (USA) and the MSAS (Japan), two next SBASs are under construction - the SDCM (Russia) and the GAGAN (India). The fundamentals and comparison of all these systems are described in the paper.
7
Content available remote A Look at the Development of GNSS Capabilities Over the Next 10 Years
EN
This paper considers what the SNS (Satellite Navigation Systems) as GPS, GLONASS, Galileo and Compass, and SBAS (Satellite Based Navigation Systems) as EGNOS, WAAS, MSAS and GAGAN ser-vices might look like 10 years from now. All these systems, called GNSS (Global Satellite Navigation System), are undergoing construction or modernization (new satellites, new frequencies, new signals, new moni-toring stations, etc.) and continuous improvement to increase its accuracy, availability, integrity, and resistance to interference. The most significant events in SNS and SBAS in the nearest 10 years are presented also. Additionally three possible scenarios considering these systems (in 2016 and 2021 years), concerning the number of satellites in particular, optimistic, pessimistic and the most probable were taken into account.
PL
W każdym nawigacyjnym systemie satelitarnym (NSS) i satelitarnym systemie wspomagającym (SSW) można wyróżnić trzy segmenty: kosmiczny, kontrolno-sterujący naziemny i użytkownika. Segment naziemny składa się z co najmniej jednej głównej stacji kontrolnej, sieci stacji śledzących oraz sieci stacji korygujących. W artykule przedstawiono zadania, liczebność oraz lokalizację wszystkich NSS i SSW, zarówno już funkcjonujących, jak i dopiero budowanych. Wspomniano również o głównych celach modernizacji segmentu naziemnego.
EN
Each satellite navigation system (SNS) and satellite based augmentation system (SBAS) is compromised of three segments: satellite constellation, ground-control/monitoring network and user receiving equipment. The major elements of ground segment consist of master control station(s), monitor stations and ground antennas. The main objectives, the number and location of these stations and antennas in SNS and SBAS actually fully operational and under construction, regional and commercial systems are described in this paper. The driving components of the ground segment modernization of all these systems are presented also.
EN
The usefulness for all sea users of Satellite Navigation Systems (SNS), Satellite Based Augmentation Systems (SBAS) and Automatic Identification System (AIS) is well known. The possibility, actual and future, of the utilization of all these systems on European inland waterways, GPS augmented by IALA DGPS reference stations, GPS augmented by European SBAS – EGNOS from direct Signal–in–Space (SIS) and GPS augmented by EGNOS from re–transmission over AIS, is presented in this paper. The operational systems, such as the German network IALA DGPS and DoRIS, and planned system such as GALEWAT, MARGAL, MUTIS and MARUSE are described also.
EN
Galileo is the European Global Navigation Satellite System, under civilian control. Galileo will provide their users with highly accurate global positioning services and their associated integrity information. The main objective of this article is to explain the basis of the Galileo integrity concept, which is fundamental for safety-critical applications such as maritime navigation. A review of the expected performance that will be achieved has been also included.
EN
Under the umbrella of PWSZ Chelm, taking account of future implementation of navigation using EUPOS and GNSS based on EGNOS several planned actions were carried out in the 2005-2006. The actions in particular contribute to: 1. ICAO and EGNOS requirements and coverage area (Chelm Town located near Polish-Ukrainian border is also at the east border of planned EGNOS coverage for ECAC states). 2. Preparatory activities to establishing the EUPOS station in PWSZ Chelm. Cooperation of PWSZ Chelm and ULC (Polish Aviation Regulator) in the frame of conventional NAV aids use and GNSS implementation in aviation. 3. Analysis of ICAO requirements and methods of testing SIS (Signal In Space) needed to certify GNSS in Poland for use for an aviation. 4. Preparatory activities to establishing the EGNOS SIS monitoring station based on EUROCONTROL Pegasus software and GNSS/EGNOS receiver Septentrio PolaRx2e. 5. Analysis of methods for exchange of information between EUPOS and EGNOS SIS station to initiate the application of satellite positioning systems to air navigation in Poland. The project EUPOS is a European initiative aiming at establishment of a uniform DGNSS (Differential Global Navigation Satellite System) basis infrastructures in Central and Eastern European countries including Chelm Town where PWSZ is localized playing vital role in GIS/GNSS implementation in the region and Polish aviation.
12
Content available GNSS for an Aviation
EN
In Polish aviation on-board GPS units are used for enroute procedures mainly. The use of GNSS for approach and landing procedures requires overcoming a lot of obstructions, including both organizational and technical ones. The paper presents information connecting with GNSS implementation in aviation.
13
Content available remote Modernization of satellite navigation systems and theirs new maritime applications
EN
The last years gave a rise to many important changes in the operational status and practical exploitation of satellite navigation systems (SNS) GPS & GLONASS, differential mode of these systems (DGPS, DGLONASS) and Satellite Based Augmentation Systems (SBAS) as EGNOS or WAAS. Therefore the modernization of these systems as new satellites, new civil signals, new codes, new monitoring stations etc. and the details about new systems under construction as Galileo, Compass and IRNSS, the problem of interoperability and new maritime applications are presented in this paper.
14
Content available remote DGNSS Re-Capitalization
EN
The General Lighthouse Authorities (UK & Ireland) DGPS service came into operation in 1998. In common with other maritime DGPS services the equipment will need replacement over the next few years, in fact computing and communications equipment have already been replaced. Replacement of existing hardware with similar, dedicated Reference Stations and Integrity Monitors (RSIM) is the baseline option and will form a fallback plan if other options prove not to be feasible. However, the choice of suppliers is limited and once chosen, it would be difficult to diversify. Three other options can be identified: software RSIM, Virtual Reference Station (VRS) and integration with Satellite Based Augmentation Systems (SBAS). The software RSIM option draws on the experience of the United States Coast Guard. The VRS and SBAS integration options are treated as potential alternatives to an onsite hardware or software RSIM, but the possibilities of combining either or both with the software RSIM are also considered. All options took into account the need for validation of system performance. This paper draws conclusions about feasibility, performance, risks and costs of the different options and makes recommendations on the course to adopt.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.