Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sample imbalance
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Bearing fault diagnosis is an effective technical means to improve the reliability of centrifugal fan bearings. In this paper, a transfer learning-based fault diagnosis method for Centrifugal fan bearings is proposed, utilizing the improved CNN (I-CNN) and Joint Maximum Mean Discrepancy (JMMD) algorithms. The raw vibration signals of bearings are enhanced through fast Fourier transform for feature representation. The enhanced signals are then processed by parallel multi-scale CNNs with an embedded Squeeze-and-Excitation (SE) attention mechanism to extract and focus on key features. Furthermore, the JMMD is introduced as a metric for quantifying the disparity between the source and target domains, thereby mitigating domain shift. In the loss function, weight factors and scaling factors are introduced to increase attention on minority samples and easily confused samples within the imbalanced dataset. The proposed method is validated on the Centrifugal fan bearing dataset from Jiangnan University and the CWRU dataset.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.