Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 38

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  salt caverns
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
Zaczyn cementowy uszczelniający rury okładzinowe jest narażony na stałe oddziaływanie solanki oraz wodoru. Wpływ tych czynników na parametry płaszcza cementowego jest istotnym zagadnieniem przy magazynowaniu gazu w kawernach solnych. Określono wpływ wodoru na cement w środowisku solanki w pełnym nasyceniu i przeprowadzono prace badawcze, które pozwoliły określić jakość stwardniałego zaczynu cementowego w kontakcie z wodorem i solanką.
EN
Hardened cement cores, conditioned in a satd. brine soln. for 2, 4 or 6 months, under a H₂ pressure of 100 bar and at 40°C, were subjected to a H₂ tightness test and compared with the tightness of unconditioned cores. The av. H₂ flow through the core and the total gas vol. were detd. An increase in H₂ migration through the hardened cement slurry previously conditioned in brine compared to the unconditioned one was obsd.
PL
Artykuł przedstawia wyniki badań nad doszczelnieniem matrycy kamieni cementowych otrzymanych z zaczynów cementowych przeznaczonych do podziemnych magazynów wodoru w kawernach solnych. W recepturach zaczynów cementowych została zwiększona ilość dodatku mikrocementu oraz podjęto próbę zastosowania wybranych rodzajów nanomateriałów. Receptury cementowe opracowane zostały w INiG – PIB w Laboratorium Zaczynów Uszczelniających. Badania przeprowadzono dla temperatury 25°C i ciśnienia 10 MPa. W badanych zaczynach cementowych jako spoiwo wiążące zastosowano cement wiertniczy G. Zaczyny cementowe sporządzano na solance o pełnym nasyceniu o gęstości 1200 kg/m3 ze względu na bezpośrednią obecność soli w otworze. Do solanki dodawano kolejno środki: odpieniający, upłynniający i obniżający filtrację oraz nanomateriały. Pozostałe składniki: mikrocement, gips modelowy oraz cement mieszano ze sobą i wprowadzano następnie do wody zarobowej. W przypadku każdego zaczynu cementowego wykonywano badania parametrów technologicznych takich jak: właściwości reologiczne, gęstość, rozlewność, odstój wody oraz czas gęstnienia zaczynu. Przeprowadzano również badania wytrzymałości na ściskanie po 7 dniach oraz po 1 i 6 miesiącach, a także pomiar porowatości stwardniałych zaczynów cementowych po 6 miesiącach deponowania w pełni nasyconej solance. Opracowane zaczyny cementowe charakteryzowały się dobrymi parametrami reologicznymi oraz zerowym odstojem wody. Gęstości zaczynów cementowych wahały się w przedziale od 1910 kg/m3 do 1940 kg/m3 . Wszystkie zbadane stwardniałe zaczyny cementowe charakteryzowały się zwartą mikrostrukturą o niskiej zawartości makroporów. Udział porów o średnicy powyżej 10 000 nm wyniósł od 1,3% do 3,2% ilości wszystkich porów. Natomiast udział porów o średnicy poniżej 100 nm w całej matrycy stwardniałego zaczynu cementowego wyniósł od 94,3% do 97,5%. Dodatek większej ilości mikrocementu oraz wprowadzenie nanokomponentów do receptur zaczynów cementowych spowodowały wzrost wytrzymałości na ściskanie oraz obniżenie porowatości kamieni cementowych.
EN
The article presents the results of research on the sealing of the matrix of cement stones derived from cement slurries, specifically designed for underground hydrogen storage in salt caverns. This study involved increasing the amount of microcement in cement slurry mixes and experimenting with selected types of nanomaterials. Laboratory tests of cement slurries were conducted at the Oil and Gas Institute – National Research Institute, under controlled conditions of 25°C and 10 MPa. Cement slurries were prepared on the basis of class G oil-well cement. Cement slurries were prepared on fully saturated brine with a density of 1200 kg/m3 reflecting the direct presence of salt in the wellbore. The agents added into the brine included defoamers, liquefying agents, fluid loss control additive and nanocomponents. The other ingredients – microcement, model gypsum and cement – were mixed together and then added to the mixing water. The cement slurries were tested for rheological parameters, density, free water, fluidity, filtration and thickening time. Compressive strength tests were conducted at intervals of 7 days, 1 month and 6 months, along measurement of porosity of hardened cement slurry after 6 months of depositing fully saturated brine. The developed cement slurries exhibited favorable rheological parameters and no free water. The densities of tested slurries ranged from 1910 kg/m3 to 1940 kg/m3 . All hardened cement slurries tested were characterized by a compact microstructure with a low content of macropores. The proportion of pores with a diameter above 10,000 nm ranged from 1.3 to 3.2% of all pores. Whereas, the proportion of pores with a diameter below 100 nm in the entire cement stone matrix ranged from 94.3 to 97.5%. The addition of a larger amount of microcement and nanocomponents to the cement slurry mixes resulted in an increase in compressive strength and a decrease in the porosity of cement stones.
PL
Odnawialne źródła energii oraz tzw. zielony wodór, zgodnie z planem UE, odegrają główną rolę w dekarbonizacji gospodarki. Obecnie zdecydowana większość wodoru, zarówno w Polsce, UE, jak i na świecie produkowana jest w oparciu o paliwa kopalne, głównie gaz ziemny. Taka produkcja wodoru obciążona jest emisją CO2. Dlatego też głównym celem unijnej strategii wodorowej jest rozwój odnawialnego, zielonego wodoru otrzymywanego w procesie elektrolizy przy wykorzystaniu OZE. W artykule przybliżono rozwój wykorzystania OZE w zakresie produkcji energii elektrycznej w latach 2015-2022, zwrócono uwagę na wysoką dynamikę rozwoju fotowoltaiki i jej rosnący udział w bilansie wytwarzania energii elektrycznej. W dalszej części scharakteryzowano technologie magazynowania wodoru w kontekście rozwoju gospodarki wodorowej, ze szczególnym uwzględnieniem magazynowania wodoru w kawernach solnych. Przybliżono doświadczenia z USA i Wielkiej Brytanii w zakresie wykorzystania kawern solnych do magazynowania wodoru. Rozwój technologii magazynowania wodoru jest niezbędny nie tylko dla wykorzystania wodoru w ważnych gałęziach gospodarki, jak m.in. ciepłownictwo i transport, ale także dla zagospodarowania nadwyżek energii z OZE. Podkreślono istnienie korzystnych warunków geologicznych w Polsce do budowy wielkoskalowych magazynów wodoru w kawernach solnych.
EN
According to the European Union plan, renewable energy sources and green hydrogen will play a major role in decarbonizing the economy. Currently, the vast majority of hydrogen in Poland, the EU and around the world, is produced based on fossil fuels, mainly natural gas. Unfortunately this hydrogen production is burdened with C02 emissions. Therefore, the main objective of the EU hydrogen strategy is to develop renewable green hydrogen obtained by electrolysis using RES. The article presents the development of the use of RES for electricity generation in 2015-2022, noting the high dynamics of photovoltaic development and its growing share in the balance of electricity generation. In the following part, hydrogen storage technologies were characterized in the context of the development of the hydrogen economy, with particular attention to the storage of hydrogen in salt caverns. Experiences from the US and the UK in the use of salt caverns for hydrogen storage are outlined. The development of hydrogen storage technology is essential not only for the use of hydrogen in important industries, such as heating and transportation, among others, but also for the development of surplus energy from RES. The existence of favorable geological conditions in Poland for the construction of large-scale hydrogen storage in salt caverns was emphasized.
PL
Artykuł przedstawia wyniki badań nad opracowaniem zaczynów cementowych przeznaczonych do podziemnego magazynowania wodoru w kawernach solnych. Receptury cementowe opracowane zostały w Instytucie Nafty i Gazu – Państwowym Instytucie Badawczym w Laboratorium Zaczynów Uszczelniających. Badania przeprowadzono dla temperatury 45°C i ciśnienia 10 MPa. W badanych zaczynach cementowych jako spoiwo wiążące zastosowano cement wiertniczy G. Zaczyny cementowe sporządzano na solance o pełnym nasyceniu o gęstości 1,2 g/cm3 ze względu na bezpośrednią obecność soli w otworze. Do solanki dodawano kolejno środki: odpieniający, upłynniający i obniżający filtrację. Pozostałe składniki: mikrocement, gips modelowy oraz cement mieszano ze sobą i wprowadzano następnie do wody zarobowej. W przypadku każdego zaczynu cementowego wykonywano badania parametrów technologicznych, takich jak: właściwości reologiczne, gęstość, rozlewność, odstój wody oraz czas gęstnienia zaczynu. Przeprowadzano również badania wytrzymałości na ściskanie po 2 dniach oraz po 3, 5 i 8 miesiącach, a także pomiar porowatości stwardniałych zaczynów cementowych po 8 miesiącach deponowania we w pełni nasyconej solance. Na opracowanych zaczynach wykonano również badanie szczelności stwardniałego zaczynu cementowego dla wodoru. Opracowane zaczyny cementowe charakteryzowały się dobrymi parametrami reologicznymi oraz zerowym odstojem wody. Gęstości zaczynów cementowych wahały się w przedziale od 1900 kg/m3 do 1910 kg/m3 . Wszystkie zbadane stwardniałe zaczyny cementowe charakteryzowały się zwartą mikrostrukturą o niskiej zawartości makroporów. Udział porów o średnicy powyżej 10 000 nm wyniósł od 1,9% do 2,5% ilości wszystkich porów. Natomiast udział porów o średnicy poniżej 100 nm w całej matrycy stwardniałego zaczynu cementowego wyniósł od 95,9% do 96,9%. Średni strumień objętości przepływu wodoru przez stwardniały zaczyn cementowy miał wartość od 0,686 cm3 /min do 6,85 cm3 /min. Dla ustabilizowanych wartości strumienia objętości przepływu obliczono współczynniki przepuszczalności. Średnie wartości współczynnika przepuszczalności dla stwardniałego zaczynu cementowego wynosiły od 0,0000281 mD do 0,000284 mD, co świadczy o dobrej szczelności uzyskanych stwardniałych zaczynów cementowych.
EN
The article presents the results of research on the development of cement slurries intended for the underground storage of hydrogen in salt caverns. Laboratory tests of cement slurries were carried out at the Oil and Gas Institute – National Research Institute. The tests were carried out at a temperature of 45°C and a pressure range of 10 MPa. Cement slurries were prepared on the basis of class G drilling cement. The cement slurries were prepared on fully saturated brine with a density of 1.2 g/cm3 due to the direct presence of salt in the well. The following agents were added to the brine: defoamers, liquefying agents and fluid loss control. The remaining ingredients –:microcement, model gypsum and cement – were mixed together and then added to the mixing water. The cement slurries were tested for rheological parameters, density, free water, fluidity, filtration and thickening time. Compressive strength tests were carried out after 2 days and 3, 5 and 8 months as well as measurement of porosity of hardened cement slurry after 8 months of depositing fully saturated brine. For 3 compositions, a test of the tightness of the cement stone for hydrogen was also carried out. The developed cement slurries were characterised by good rheological parameters and no free water. The densities of tested slurries ranged from 1900 kg/m3 to 1910 kg/m3 . All tested hardened cement slurries featured a compact microstructure with a low content of macropores. The share of pores with a diameter above 10 000 nm ranged from 1.9 to 2.5% of all pores. On the other hand, pores with a diameter below 100 nm in the entire cement stone matrix ranged from 95.9 to 96.9%. The average hydrogen volumetric flow rate through the cement stone ranged from 0.686 cm3 /min do 6.85 cm3 /min. Permeability coefficients were calculated for stabilised values of flow rate. The average value of the permeability coefficient for cement stone ranged from 0.0000281 mD to 0.000284 mD, which proves that the obtained hardened cement slurries are sufficiently tight.
PL
Artykuł przedstawia wyniki wstępnych badań nad opracowaniem zaczynów cementowych nadających się do uszczelniania rur okładzinowych w odwiertach udostępniających kawerny solne przeznaczone do podziemnego magazynowania wodoru. Receptury cementowe opracowane zostały w INiG – PIB, w Laboratorium Zaczynów Uszczelniających. Badania przeprowadzono dla temperatur w zakresie 25–60°C i ciśnień 10–30 MPa. W badanych zaczynach cementowych jako spoiwo wiążące zastosowano cement wiertniczy G. Zaczyny cementowe sporządzano na solance o pełnym nasyceniu, o gęstości 1,2 g/cm3 , ze względu na bezpośrednią obecność soli w otworze. Do solanki dodawano kolejno środki: odpieniający, upłynniający, przyspieszający wiązanie i obniżający filtrację. Pozostałe składniki: mikrocement, gips modelowy oraz cement mieszano ze sobą i wprowadzano następnie do wody zarobowej. Dla każdego zaczynu cementowego wykonywano badania parametrów reologicznych, określano gęstość i rozlewność. Mierzono odstój wody i czas gęstnienia zaczynu. Wykonywano również badania wytrzymałości na ściskanie po 2, 7, 14 i 28 dniach oraz pomiar porowatości kamieni cementowych po 28 dniach. Po przeanalizowaniu wyników badań porowatości kamieni cementowych oraz pozostałych parametrów zaczynów i kamieni cementowych, do badania przepuszczalności kamienia cementowego dla wodoru wytypowano 1 próbkę mającą najkorzystniejsze parametry. Opracowane zaczyny cementowe charakteryzowały się dobrymi parametrami reologicznymi oraz zerowym odstojem wody. Gęstości zaczynów cementowych wahały się w przedziale od 1,91 g/cm3 do 1,93 g/cm3 . Wszystkie badane próbki kamieni cementowych wraz z upływem czasu odznaczały się wzrostem parametrów mechanicznych. Rozkład porów kamieni cementowych charakteryzował się niewielką ilością porów o średnicy powyżej 100 nm, co świadczy o ich zwartej strukturze. Przedstawione badania pozwolą zdobyć wiedzę na temat zaczynów cementowych przeznaczonych do uszczelniania rur w warunkach podziemnego magazynowania wodoru w kawernach solnych. Wykonane testy stanowią wstęp do dalszych badań nad opracowaniem optymalnych rodzajów zaczynów cementowych przeznaczonych do podziemnego magazynowania wodoru w kawernach solnych.
EN
The article presents the results of preliminary research on the development of cement slurries intended for the underground storage of hydrogen in salt caverns. Laboratory tests of cement slurries were carried out at the Oil and Gas Institute – National Research Institute. The tests were carried out in the temperature range of 25–60°C and the pressure range of 10–30 MPa. Cement slurries were prepared on the basis of class G drilling cement. Cement slurries were prepared using fully saturated brine with a density of 1.2 g/cm3 due to the direct presence of salt in the wellbore. The following agents were added to the brine: defoamers, liquefying agents, accelerating setting and fluid loss control. The remaining ingredients: microcement, model gypsum and cement were mixed together and then added to the mixing water. The cement slurries were tested for density, free water, fluidity, rheological parameters, filtration and thickening time. Compressive strength tests were carried out after 2, 7, 14 and 28 days, while porosity after 28 days. The developed cement slurries were characterized by good rheological parameters and no free water. The densities of tested slurries ranged from 1,91 g/cm3 to 1,93 g/cm3 . All the tested samples of cement stones showed an increase in mechanical parameters with time. The pore distribution of cement stones was characterized by a small number of pores with diameters greater than 100 nm, which proves their compact structure. This research will provide knowledge on cement slurries intended for underground hydrogen storage in salt caverns and constitute initial research in this direction.
EN
Salt caverns are used for the storage of natural gas, LPG, oil, hydrogen, and compressed air due to rock salt advantageous mechanical and physical properties, large storage capacity, flexible operations scenario with high withdrawal and injection rates. The short- and long-term mechanical behaviour and properties of rock salt are influenced by mineral content and composition, structural and textural features (fabrics). Mineral composition and fabrics of rock salt result from the sedimentary environment and post sedimentary processes. The impurities in rock salt occur in form of interlayers, laminae and aggregates. The aggregates can be dispersed within the halite grains or at the boundary of halite grains. Mineral content, mineral composition of impurities and their occurrence form as well as halite grain size contribute to the high variability of rock salt mechanical properties. The rock or mineral impurities like claystone, mudstone, anhydrite, carnallite and sylvite are discussed. Moreover, the influence of micro fabrics (in micro-scale) like fluid inclusions or crystals of other minerals on rock salt mechanical performance is described. In this paper the mechanical properties and behaviour of rock salt and their relation to mineral composition and fabrics are summarised and discussed. The empirical determination of impurities and fabrics impact on deformation mechanism of rock salt, qualitative description and formulation of constative models will improve the evaluation and prediction of cavern stability by numerical modelling methods. Moreover, studying these relations may be useful in risk assessment and prediction of cavern storage capacity.
EN
Based on the formal and legal regulations, the need to increase the capacity of cavern underground gas storage in Poland is demonstrated. The author raised the problem of country's energy security, which is partly based on intervention reserves of energy carriers. A description of the state of actual storage capacities and strategic reserves of natural gas in Poland is presented, and the level of reserves is assessed based on applicable law. Focusing on the advantages of salt deposits in the context of underground gas storage, the author presents safe conditions for underground gas storage and the possible location of cavern underground gas storage in two prospective salt deposits: the Damasławek salt dome and the layer salt deposit of the Fore-Sudetic Monocline. The article draws attention to the complexity of the issue of geomechanical stability of caverns for underground gas storage, taking into account the type of deposit (layer/dome).
8
Content available Magazynowanie wodoru w obiektach geologicznych
PL
Gospodarka wodorowa staje się jednym z głównych kierunków Europejskiego Zielonego Ładu, który w roku 2050 powinien zapewnić neutralność klimatyczną krajów zrzeszonych w UE. Wodór będzie wytwarzany przez odnawialne źródła energii, jak również separowany i pozyskiwany, np. w koksowniach. Znajdzie zastosowanie w ekologicznym napędzie samochodów (czysty wodór) i jako domieszka do gazu ziemnego w sieciach dystrybucyjnych. Optymalizacja jego wykorzystania w gospodarce wymaga przede wszystkim stworzenia systemu jego magazynowania. Ze względu na konieczne objętości będą to obiekty geologiczne, tj. kawerny solne, wyeksploatowane złoża ropy i gazu albo zawodnione obiekty geologiczne. W Polsce podjęto problem zastosowania technik wodorowych, prowadzone są prace związane ze wszystkimi elementami koniecznej infrastruktury wodorowej. Niniejsza praca koncentruje się na problematyce dotyczącej konieczności magazynowania wodoru. W Polsce mamy do wyboru trzy rodzaje magazynów w obiektach geologicznych. Są to kawerny solne, wyeksploatowane złoża gazu oraz zawodnione struktury porowate. Jeśli chodzi o kawerny solne, współpraca Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego z przemysłem trwa już od roku 1998. Kawerny istnieją i są wykorzystywane jako magazyny metanu. Obecnie można stwierdzić, że już teraz możliwe jest magazynowanie w nich mieszanin gazowo-wodorowych przy pełnej kontroli wszelkich koniecznych parametrów (opracowano algorytmy kontrolujące i monitorujące wszystkie konieczne procesy). W odniesieniu do wyeksploatowanych złóż gazu / struktur zawodnionych przeprowadzono szeroko zakrojone prace studialne dotyczące zakresu badań i modelowań. Znaleziono partnera do ewentualnego konsorcjum – Silesian University of Technology. Konsorcjum jest już w stanie podjąć się wykonania projektu adaptacji wyeksploatowanego złoża na magazyn metanowo-wodorowy lub w zależności od potrzeb – na magazyn wodorowy. Projekt będzie dotyczył wszystkich prac związanych z badaniami skał i płynów złożowych, geomechaniki i mikrobiologii.
EN
Hydrogen economy became one of the main directions in EU’s Green Deal for making Europe climate neutral in 2050. Hydrogen will be produced with the use of renewable energy sources or it will be obtained from coking plants and chemical companies. It will be applied as ecological fuel for cars and as a mix with methane in gas distribution networks. Works connected with all aspects of hydrogen infrastructure are conducted in Poland. The key problem in creating a hydrogen system is hydrogen storage. They ought to be underground (RES) because of their potential volume. Three types of underground storages are taken into account. There are salt caverns, exploited gas reservoirs and aquifers. Salt caverns were built in Poland and now they are fully operational methane storages. Oli and Gas Institute – National Research Institute has been collaborating with the Polish Oil and Gas Company since 1998. Salt cavern storage exists and is used as methane storages. Now it is possible to use them as methane-hydrogen mixtures storages with full control of all operational parameters (appropriate algorithms are established). Extensive study works were carried out in relation to depleted gas reservoirs/aquifers: from laboratory investigations to numerical modelling. The consortium with Silesian University of Technology was created, capable of carrying out all possible projects in this field. The consortium is already able to undertake the project of adapting the depleted field to a methane-hydrogen storage or, depending on the needs, to a hydrogen storage. All types of investigations of reservoir rocks and reservoir fluids will be taken into consideration.
PL
Modelowano zachowanie gazu ziemnego w sieci przesyłowej w północnej Polsce w przypadku uwzględnienia w składzie gazu ziemnego dodatku wodoru pochodzącego z potencjalnych magazynów energii zlokalizowanych w kawernach solnych w celu prognozowania zmian parametrów przesyłanego gazu ziemnego w sieci przesyłowej.
EN
The behavior of H₂-contg. natural gas in transmission pipeline system in northern Poland was modeled to evaluate the possibility of the H₂ storage in salt caverns and to predict changes of the transmitted natural gas parameters.
PL
W artykule omówiono typy podziemnych magazynów węglowodorów płynnych: gazu oraz ropy i paliw płynnych, eksploatowanych na terenie Polski, wraz z podstawowymi danymi technicznymi. Przedstawiono w skrócie historię rozwoju podziemnego magazynowania gazu oraz ropy naftowej i paliw – benzyn oraz oleju napędowego i opałowego. Omówiono rolę organów nadzoru górniczego, jaką jest kontrola i nadzór nad przestrzeganiem przepisów w zakresie bezpieczeństwa i higieny pracy, bezpieczeństwa pożarowego, ratownictwa górniczego, gospodarki złożem w procesie jego eksploatacji, rekultywacji gruntów i zagospodarowania terenu. Wskazano na najbardziej istotne dla bezpieczeństwa, w tym bezpieczeństwa powszechnego, zagadnienia i zagrożenia występujące przy eksploatacji podziemnych magazynów węglowodorów oraz omówiono zagadnienia prawidłowej ich eksploatacji, uwzględniając awarie zaistniałe w czasie budowy i eksploatacji magazynów węglowodorów, zatrudniania podmiotów wykonujących powierzone im czynności w ruchu zakładu górniczego, a także kwalifikacji osób dozoru ruchu.
EN
The paper discusses the types of underground storage of liquid hydrocarbons – gas, crude oil and liquid fuels – exploited in Poland, along with basic technical data. A brief outline of the development of underground storage of gas, crude oil and fuels – gasoline, diesel and heating oil. It discusses the role of mining supervision authorities, which is control and supervision over compliance with provisions in the field of occupational health and safety, fire safety, mine rescue, deposit management in the process of its exploitation, land reclamation and land development. The most important issues related to safety, including general safety, issues and threats occurring in the exploitation of underground hydrocarbon storage were discussed, and the issues of proper exploitation were discussed, taking into account failures occurring during the construction and operation of hydrocarbon storage facilities, employment of entities carrying out activities entrusted to them in mining plant operations, as well as the qualifications of operation control persons.
EN
The theory of professor Stanisław Knothe has become a basis for practical prognostic calculations of mining impacts and, by the same token, it has allowed initiation of large scale exploitation of major coal, salt and metal ore deposits located in the protective pillars of towns and important surface constructions/facilities. The theory of professor Knothe is being successfully applied by the Polish and international mining industries for over sixty years. One can certainly say that it is one of the best known and internationally recognized achievements of the Polish mining science. The article presents a brief summary of contemporary applications of the Knothe theory in calculation of rock mass and surface subsidence not only in their classic form relevant to calculations for mining coal deposits. The solution presented here is based on a mathematical model of deposit impacts and it includes, among other things, subsidence caused by fl uid deposit exploitation, heat extraction in deep geothermal applications and the uplifting of land surface caused by changes in mining water levels in closed hard coal mines.
12
Content available remote Efektywność magazynowania gazu ziemnego i wodoru w kawernach solnych
PL
Określono pojemności kawern magazynowych gazu ziemnego i wodoru w zależności od warunków geologiczno-górniczych. Na tej podstawie porównano ilość energii zgromadzoną w analizowanych gazach. Opracowano odpowiednie mapy izoliniowe obrazujące ilość energii, jaką można zmagazynować w przeliczeniu na jednostkę powierzchni terenu. Analiza dotyczy pokładu soli kamiennej w rejonie Zatoki Gdańskiej.
EN
Storage capacity of the gases was estd. depending on the geol. and mining conditions of NaCl salt bed located in the region of Gdańsk Gulf in northern Poland. Special maps were elaborated showing the amt. of energy that can be accumulated in the analyzed gases per unit area of land.
13
Content available Badania szczelności w kawernach solnych w Kanadzie
PL
Głównym celem badań szczelności (MIT) kawern solnych (kawerny magazynowe oraz do składowania odpadów) przeprowadzanych w Kanadzie jest pokazanie, że magazynowany/ składowany produkt jest bezpieczny i jego migracja na powierzchnię terenu lub do innych formacji geologicznych nie jest możliwa. Szczegółowe zalecenia dotyczące MIT zostały określone przez Canadian Standard Association (CSA). Badania szczelności zgodnie z zaleceniami CSA przeprowadzane są z użyciem sprężonego azotu. Zgodnie z regulacjami prawnymi, pierwsze badanie szczelności musi być przeprowadzone po zakończeniu procesu ługowania. Pozytywny wynik MIT jest warunkiem koniecznym do otrzymania koncesji na eksploatacje kawerny. Czas pomiędzy kolejnymi testami szczelności nie może być dłuższy niż pięć lat. Zalecany przebieg badań jest opublikowany w biuletynie Z341-14 wydanym przez Canadian Standards Association. W artykule zamieszczono opis przygotowania kawerny do testów szczelności, sposób wykonania testów i interpretację wyników.
EN
The purpose of the salt cavern (storage and disposal) Mechanical Integrity Test (MIT) is to prove that the product stored in the cavern is safe and its leak into the surface or another geological formation is not possible. It is a pressure nitrogen/ brine interface type test. Detailed recommendations concerning MIT were described by Canadian Standards Association (CSA). According to CSA, the first test must be done at the end of the cavern mining process and with use of compressed nitrogen. Positive result of MIT is necessary to obtain license for the cavern service. The test must be repeated every five years. The full recommended test procedure is published in bulletin Z341-14 of Canadian Standards Association. In this paper, caverns preparation for MIT was described as well as practical application of test procedures and results interpretation.
14
Content available Wybrane aspekty podziemnego magazynowania wodoru
EN
The article describes the subject of underground hydrogen storage in the context of energy storage using hydrogen as a carrier, and shows its role in the Polish energy policy. The review of the most recent papers was performed to provide the information about hydrogen properties and options for underground hydrogen storage (salt caverns, depleted hydrocarbons fields, deep aquifers) in Poland. Analysis of the literature indicates small practical experiences in the underground hydrogen storage. The behaviour of underground-stored hydrogen is more complex than expected. Previous results indicate that this option may in future become the preferred solution for storing excess electricity related to the irregular supply from renewable sources. Geological formations can provide the possibility of storing energy on a medium- and long-term time scale. Knowledge of the underground storage of carbon dioxide and other gases will be useful for searching ofsites for underground storage of this gas. Due to the planned increasing share of renewable energy in electricity production in Poland, the issue of underground hydrogen storage will become increasingly relevant.
PL
Uszczelnienie kolumn rur okładzinowych w warstwach soli wymaga zastosowania specjalnie opracowanych zaczynów cementowych o długotrwałej odporności na jej działanie, dlatego bardzo istotne jest prowadzenie szczegółowych badań nad doborem odpowiednich receptur. W celu przygotowania właściwych składów należy podjąć i realizować innowacyjne badania laboratoryjne nad doborem rodzajów środków chemicznych i materiałów uszczelniających wpływających na polepszenie parametrów mechanicznych otrzymanych z nich kamieni cementowych. Celem zaprezentowanych w artykule badań była analiza wpływu środowiska solnego na zmiany parametrów technologicznych kamieni cementowych w czasie. Z wybranych do badań składów otrzymano kamienie cementowe, które poddawano długoterminowemu (do 12 miesięcy) działaniu solanki o pełnym nasyceniu. Po założonych okresach czasu badano ich parametry technologiczne. Zinterpretowanie uzyskanych wyników badań laboratoryjnych pozwoli na wytypowanie odpowiednich składów zaczynów cementowych mogących znaleźć zastosowanie podczas uszczelniania podziemnych magazynów gazu w kawernach solnych. Opracowane i wybrane receptury, dzięki swoim parametrom reologicznym oraz właściwościom mechanicznym kamieni cementowych, mogą być z powodzeniem stosowane podczas takich zabiegów. W wyniku przeprowadzonych badań laboratoryjnych opracowano receptury zaczynów cementowych na bazie solanki o pełnym nasyceniu jako wody zarobowej (wynika to z bezpośredniej obecności soli w otworze), które mogą znaleźć zastosowanie podczas uszczelniania kolumn rur okładzinowych w warunkach występowania pokładów soli.
EN
Sealing of casings in salt layers requires the use of specially developed cement slurries with long-lasting resistance, so it is important to conduct detailed research on the selection of suitable recipes. In order to prepare the right compositions, innovative laboratory tests on the selection of chemicals and sealing materials that improve the mechanical properties of the resulting cement stones. The aim of this article was to analyze the influence of salt environment on changes in technological parameters of cement stones over time. Cement stones samples were selected for long-term seasoning (12 months) in full saturated brine and their technological properties were examined for a predetermined period of time. Interpretation of the obtained results allows to identify appropriate cement slurries formulas with the potential for application in the sealing of underground gas storages in salt caverns. The developed and selected recipes thanks to proper rheological and mechanical parameters can be successfully used during such procedures. The aim of laboratory tests were to develop cement slurries based on fully saturated brine, as mixing water that can be used during sealing the casings in salt layers.
PL
Przestawiono wybrane rezultaty modelowania termodynamicznych procesów związanych z magazynowaniem wodoru w kawernach solnych. Do symulacji użyto programu KAGA w którym zaimplementowano cztery różne równania stanu dla wodoru.
EN
Selected results of modeling thermodynamic processes connected with underground storage of hydrogen in salt caverns are presented. KAGA software was used for the simulation with four different equation of state for hydrogen.
PL
Koncepcja wykorzystania wodoru do magazynowania energii nie jest nowa. W Niemczech od wielu lat prowadzone są prace nad magazynowaniem wodoru w kawernach solnych, także w Polsce prowadzone są od niedawna prace w tej dziedzinie. Artykuł ten przybliżyć ma główne elementy tej koncepcji a także przedstawić krótko przeprowadzone do tej pory prace nad tą koncepcją w Polsce. Pierwsza część to krótkie scharakteryzowanie podstawowych elementów koncepcji tzn. możliwości pozyskiwania energii, opis złóż soli kamiennej w Polsce oraz schemat magazynowania energii w postaci wodoru. Energia elektryczna przeznaczona do magazynowania pochodziła by głownie z OZE lub nadwyżek energii z konwencjonalnych elektrowni. Jedynymi złożami soli kamiennej nadającymi się do tworzenia w nich podziemnych magazynów są te z formacji cechsztyńskiej. Magazynowanie energii elektrycznej w postaci wodoru polega na sprężeniu w kawernie solnej wodoru, powstałego z procesu elektrolizy wody. W roku 2013 powstało konsorcjum składające się z Grupy LOTOS (lider), Gaz-Systemu, AGH, CHEMKOP-u, Politechniki Śląskiej i Politechniki Warszawskiej. Konsorcjum to otrzymało w ramach programu GEKON prowadzonego przez NCBiR dofinasowanie prac badawczych i w roku 2015 rozpoczęło prace nad projektem HESTOR „Magazynowanie energii w postaci wodoru w kawernach solnych”. W ramach projektu zostały przeanalizowane różne lokalizacje w których mogłyby powstać kawerny solne magazynujące wodór. Dla najbardziej obiecujących lokalizacji zostały zaprojektowane odpowiednie kształty kawern oraz przeprowadzono obliczenia termodynamiczne. Krótkie podsumowanie tych prac przedstawione zostanie w tym artykule. Ostatnia część artykułu dotyczy korzyści jakie daje magazynowanie wodoru.
EN
The concept of using hydrogen for storing energy is not new. In Germany, for many years, works on hydrogen storage in salt caverns have been proceeded, recently also in Poland such a work started. This article is to introduce the main elements of this concept and present a short description of work on this idea carried out up to now in Poland. The first part contains a brief characterization of the basic elements of the concept, i.e. the possibility of generating energy, the description of the salt rock deposits in Poland and the scheme of energy storage in the form of hydrogen. Electricity designed to store should came mainly from Renewable Energy Sources (RES) or from surplus of power from conventional power stations. The only deposits suitable for creating in them the underground storage are those of the Zechstein formation. Electricity will be stored in the salt cavern in the form of compressed hydrogen which will be obtained in the process of electrolysis of water. In 2013 a consortium containing LOTOS Group SA (leader), Gaz-System, AGH University of Science and Technology, CHEMKOP, Silesian University of Technology, and Warsaw University of Technology has been created This consortium has received funding from NCBiR ordered – GEKON Frame, and in 2015 began work on the project HESTOR “Energy storage in the form of hydrogen in salt caverns.” Within the project different locations where salt caverns storing hydrogen might be located have been analyzed. For the most promising locations were designed suitable cavern shapes and thermodynamic calculations were conducted. A brief summary of this work will be presented in this article. The last part of the article concerns the benefits of hydrogen storage.
PL
Magazynowanie gazu ziemnego może odbywać się na wiele sposobów, m.in. pod ziemią lub na jej powierzchni w specjalnych zbiornikach. Najbardziej popularną metodą jest wykorzystanie podziemnych magazynów gazu, a zwłaszcza magazynów w kawernach solnych. Uszczelnienie kolumn rur okładzinowych w pokładach solnych wymaga zastosowania specjalnie opracowanych receptur zaczynów cementowych, z których otrzymane kamienie cementowe będą się odznaczać podwyższoną odpornością na korozyjne działanie soli. Jednym z podstawowych wymagań koniecznych do sporządzenia odpowiednich receptur jest użycie solanki o pełnym nasyceniu jako wody zarobowej oraz wykorzystanie jej jako środowiska do sezonowania próbek kamieni cementowych. Opracowanie zaczynów cementowych spełniających powyższe kryteria wymaga podjęcia innowacyjnych badań laboratoryjnych nad doborem odpowiednich rodzajów środków chemicznych i materiałów uszczelniających. W wyniku przeprowadzonych badań laboratoryjnych opracowano receptury zaczynów cementowych na bazie solanki o pełnym nasyceniu jako wody zarobowej, które mogą znaleźć zastosowanie podczas uszczelniania kolumn rur okładzinowych w warunkach występowania pokładów soli [5, 6, 8].
EN
Natural gas storage can be carried out in many ways, i.a., underground or on the surface in special tanks. The most common method is the use of underground gas storage, especially in salt caverns. Sealing casings in salt layers requires the use of specially developed cement slurries recipes, from which the received cement stones are characterized by an increased resistance to the corrosive effects of salt. One of the basic requirements necessary for the preparation of appropriate recipes, is to use the full saturated brine as mixing water and using it as an environment for the seasoning of cement stone samples. Development of cement slurries that meet the above criteria requires innovative tests on choosing the most appropriate types of chemicals and sealants. The aim of laboratory tests were to develop cement slurries, based on fully saturated brine as mixing water that can be used during sealing the casings in salt layers.
19
EN
Large quantities of synthetic gypsum are obtained from the wet flue-gas treatment process during coal burning. Synthetic gypsum is a full-value by-product that can be processed in various industries. However, overproduction causes that considerable quantities of synthetic gypsum are rather stockpiled on surface storage dumps. This paper presents an optional use of synthetic gypsum to prepare mixes based on fully saturated brine designed for salt-cavern filling. Such an operation allows, on the one hand, to recover full-value brine collected in a cavern, and, on the other hand, to reduce the quantities of gypsum dumped on land surface. In addition, filling of salt caverns with gypsum mixes is geomechanically more beneficial than cavern filling with brine. That method is also important for environmental protection reasons.
PL
W wyniku procesu mokrego oczyszczania spalin powstających w trakcie spalania węgla otrzymuje się duże ilości gipsu syntetycznego, który jest pełnowartościowym produktem możliwym do wykorzystania gospodarczego. Jednak jego nadprodukcja czyni, że duża część trafia na składowiska powierzchniowe. W artykule przedstawiono możliwość wykorzystania gipsu do sporządzania mieszanin na bazie solanki pełnonasyconej i wypełniania nią zlikwidowanych kawern solnych. Zabieg taki pozwala z jednej strony na odzyskanie pełnowartościowej solanki wypełniającej kawernę, z drugiej zaś ogranicza ilość gipsu trafiającego na składowisko powierzchniowe. Ponadto wypełnienie kawerny mieszaniną gipsową jest od strony geomechanicznej korzystniejsze, niż wypełnienie solanką. Omawiany sposób wypełniania kawern solnych ma także walor związany z ochroną środowiska.
20
Content available Possibility of energy storage in salt caverns
EN
In this article the methods of energy storage in salt caverns in the form of hydrogen, compressed air and natural gas were compared. Also the general issues concerning the geological, ecological and legal requirements for the storage of substances in rock salt deposits as well as the possibility of analyzed substances storage in the Zatoka Gdańska region and in the Goleniów salt dome were discussed. Moreover the suggestions concerning management of the brine coming from caverns leaching were also presented in this article.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.