Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  saline aquifer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The future emissions of carbon dioxide (CO2) are likely to increase beyond the current levels due to rapid industrialization in China. Several methods have been proposed as possible mitigation strategies to reduce the anthropogenically emitted CO2 from the atmosphere and water. This study provided the description of stratigraphic structure of the basin through analysis between the regional groundwater flow and the injection of carbon dioxide. The geological and geomechanical data was used to model the aquifer for geostatistical analysis. Data storage sites for geotechnical provided critical information to assess the potential risks and associated sequestration. The movement of groundwater occurred slowly with infiltration through the pores. CO2 was stored in deep aquifers for longer periods due to slow movement of water downstream. Over time, the injected CO2 dissolved water, forming minerals through chemical reactions, which converted it into carbonate minerals resulting in permanent sequestration.The chemistry of formation waters in this basin is important for many geological processes, such as the fluid-rock interaction, the migrating paths of fluid and the entrapment mechanisms of hydrocarbon. In this study, the emissions of CO2 were shifted several kilometers away from the storage area, such that the regional groundwater mixing affected the quality of surface water with consequent of toxicity to every living creature that depended on the available water from Urumqi River Basin. Injection of fluids into deep saline aquifers is therefore considered as the best mitigating strategy for CO2 abatement in water due to its enormous storage capacity.
EN
Using the Konary anticlinal structure in central Poland as an example, a geological model has been built of the Lower Jurassic reservoir horizon, and CO2 injection was simulated using 50 various locations of the injection well. The carbon dioxide storage dynamic capacity of the structure has been determined for the well locations considered and maps of CO2 storage capacity were drawn, accounting and not accounting for cap rock capillary pressure. Though crucial for preserving the tightness of cap rocks, capillary pressure is not always taken into account in CO2 injection modeling. It is an important factor in shaping the dynamic capacity and safety of carbon dioxide underground storage. When its acceptable value is exceeded, water is expelled from capillary pores of the caprock, making it permeable for gas and thus may resulting in gas leakage. Additional simulations have been performed to determine the influence of a fault adjacent to the structure on the carbon dioxide storage capacity. The simulation of CO2 injection into the Konary structure has shown that taking capillary pressure at the summit of the structure into account resulted in reducing the dynamic capacity by about 60%. The greatest dynamic capacity of CO2 storage was obtained locating the injection well far away from the structure’s summit. A fault adjacent to the structure did not markedly increase the CO2 storage capacity. A constructed map of CO2 dynamic storage capacity may be a useful tool for the optimal location of injection wells, thus contributing to the better economy of the enterprise.
PL
Na przykładzie antyklinalnej struktury Konary w centralnej Polsce zbudowano model geologiczny dolnojurajskiego poziomu zbiornikowego oraz przeprowadzono symulację zatłaczania CO2 50 różnymi lokalizacjami otworu zatłaczającego. Wyznaczono pojemność dynamiczną składowania dwutlenku węgla struktury dla rozpatrywanych otworów oraz opracowano mapy pojemności składowania CO2 bez uwzględniania oraz przy uwzględnieniu ciśnienia kapilarnego. Chociaż odgrywa istotną rolę w utrzymaniu szczelności nadkładu, ciśnienie kapilarne nie zawsze jest uwzględniane w modelowaniu zatłaczania CO2. Jest istotnym czynnikiem wpływającym na pojemność dynamiczną oraz bezpieczeństwo podziemnego składowania dwutlenku węgla. Przekroczenie jego dopuszczalnej wartości powoduje wyparcie wody z kapilar nadkładu, który staje się przepuszczalny dla gazu, co w konsekwencji może prowadzić do wycieku gazu. Wykonano dodatkowe symulacje w celu określenia, w jakim stopniu uskok w pobliżu struktury wpływa na pojemność dynamiczną dwutlenku węgla. Wyniki symulacji zatłaczania CO2 do struktury Konary pokazały, że uwzględnienie ciśnienia kapilarnego w szczycie struktury wpłynęło na obniżenie pojemności dynamicznej o około 60%. Największą pojemność dynamiczną składowania CO2 otrzymano, lokując otwór z dala od szczytu struktury. Obecność uskoku w sąsiedztwie struktury nie przyczyniła się znacząco do zmiany pojemności dynamicznej składowania dwutlenku węgla w tej strukturze. Mapa pojemności dynamicznej składowania CO2 może być pomocnym narzędziem do wyboru optymalnych miejsc do zatłaczania tego gazu, przyczyniając się do podniesienia ekonomiki przedsięwzięcia.
EN
It has been increasingly realised that geological storage of CO2 is a prospective option for reduction of CO2 emissions. The CO2 geological storage potential of sedimentary basins with the territory of Slovakia, the Czech Republic, Poland, and the Baltic States is here assessed, and different storage options have been considered. The most prospective technology is hydrodynamic trapping in the deep saline aquifers. The utilisation of hydrocarbon (HC) fields is considered as a mature technology; however storage capacities are limited in the region and are mainly related to enhanced oil (gas) recovery. Prospective reservoirs and traps have been identified in the Danube, Vienna and East Slovakian Neogene basins, the Neogene Carpathian Foredeep, the Bohemian and Fore-Sudetic Upper Paleozoic basins, the Mesozoic Mid-Polish Basin and the pericratonic Paleozoic Baltic Basin. The total storage capacity of the sedimentary basins is estimated to be as much as 10170 Mt of CO2 in deep saline aquifer structures, and 938 Mt CO2 in the depleted HC fields. The utilisation of coal seams for CO2 storage is related to the Upper Silesian Basin where CO2 storage could be combined with enhanced recovery of coal-bed methane.
PL
Aby ocenić przydatność zbiorników do składowania CO2 należy przeprowadzić szczegółową analizę warunków hydrogeologicznych i parametrów zbiornikowych w celu zidentyfikowania wszystkich potencjalnych dróg przepływu wód podziemnych. Tego typu badania są jednak drogie i zajmują dużo czasu. Dlatego też, przed ich rozpoczęciem, można przeprowadzić wstępne badania hydrogeochemiczne, polegające na ocenie stopnia przeobrażenia składu chemicznego wód i szczelności badanych zbiorników wodonośnych, na podstawie wskaźników: rNa/rCl i Cl/Br oraz mineralizacji wód. Stopień przeobrażenia chemizmu wód podziemnych zależy od głębokości ich zalegania, obecności nieprzepuszczalnego nadkładu, odległości od wychodni oraz obecności drożnych systemów szczelin i uskoków. W celu uproszczenia interpretacji hydrogeochemicznej na podstawie stopnia przeobrażenia wód wydzielono sześć tzw. typów genetycznych wód. Na Niżu Polskim analizie poddano wody z poziomów wodonośnych permu, karbonu, triasu dolnego i górnego, jury dolnej, środkowej i górnej oraz kredy. W przedziale głębokości 280–4907 m, mineralizacja wód wynosi od 0,5 do 458,4 g/l. W piętrze jurajskim występują wody o zróżnicowanych typach genetycznych, od wykluczających lokowanie dwutlenku węgla typów 1 i 2, do bardziej odpowiednich dla lokowania typów 3 i 4. Wody w zbiornikach triasowych są przeważnie typu 4–6, czyli wskazujące na bardziej korzystne warunki do lokowania CO2. Najlepsze warunki do lokowania występują w wodach piętra permskiego, gdzie dominują typy genetyczne 5 i 6.
EN
A detailed study of site hydrogeology, hydraulic properties of formations, and identification of all potential leakage pathways must be performed during an analysis of suitability for carbon dioxide storage. Prior these investigations, a preliminary hydrogeochemical analysis might be carried out, based on investigations of the geochemical maturity of groundwater and isolation of aquifers, measured by TDS, Na/Cl and Cl/Br ratios. Six types of groundwater, according to the degree of geochemical maturity and isolation, have been identified in the Polish Lowlands; from the modern freshwaters that contact with meteoric waters (types 1 and 2), to the oldest, stagnant, highly mineralized brines (types 5 and 6). The Carboniferous, Permian, Triassic and Jurassic aquifers, between 290 and 4907 m depth, contain waters of 0.5–458.4 g/l TDS. The geochemical maturity of waters depends on the depth, presence of impermeable caprock, distance from the outcrops and presence of faults and fractures. The waters in the Jurassic reservoirs are of different types, from types 1 and 2, which are not suitable for CO2 storage, to types 3 and 4, which are more suitable. The Triassic reservoirs are mostly of types 4 and 6, which are more suitable for CO2 storage. The most suitable for CO2 storage are the Permian aquifers of types 4 to 6.
PL
Jedną z podstawowych cech głębokich poziomów wodonośnych decydujących o ich przydatności do lokowania dwutlenku węgla jest ich szczelność, która uniemożliwia migrację wód w kierunku górnych partii zbiornika. Jedną z metod oceny izolacji głębokich poziomów wodonośnych jest analiza stopnia przeobrażenia składu chemicznego wód. Opisana w tym artykule metoda była używana w pierwszym etapie projektu dotyczącego rozpoznania formacji i struktur do bezpiecznego geologicznego składowania CO2 wraz z ich programem monitorowania w rejonie Bełchatowa. Możliwości lokowania CO2 w głębokich poziomach wodonośnych w rejonie Bełchatowa były badane za pomocą analizy hydrochemicznej dojrzałości wód i stopnia szczelności zbiornika, których miarą są wskaźniki hydrochemiczne: Na/Cl, Cl/Br i mineralizacja wód. Wydzielono sześć typów genetycznych wód w zależności od stopnia przeobrażenia chemizmu, będącego wskaźnikiem szczelności danego zbiornika, od najmłodszych wód w kontakcie z wodami infiltracyjnymi (typ 1 i 2) do najstarszych, stagnujących, wysoko mineralizowanych solanek (typ 5 i 6). Analizie poddano wodę z poziomów wodonośnych triasu dolnego i górnego, jury dolnej, środkowej i górnej oraz kredy. W przedziale głębokości 518–4530 m mineralizacja wód wynosi od 0,5 do 370 g/l. Jakość tych wód wyklucza ich przydatność do celów pitnych. Stopień przeobrażenia chemizmu wód zależy od głębokości, obecności nieprzepuszczalnego nadkładu, odległości od wychodni oraz obecności drożnych systemów szczelin i uskoków. W poziomach jurajskich występują wody o zróżnicowanych typach, od wykluczających lokowanie dwutlenku węgla typów 1 i 2 do bardziej odpowiednich do lokowania typów 3 i 4. Wody w zbiornikach triasowych są przeważnie typu 5 lub 6, czyli wskazujące na najbardziej odpowiednie warunki do lokowania CO2. Stosowanie opisanej w artykule analizy stopnia przeobrażenia chemizmu wód głębokich poziomów wodonośnych do szacunkowej oceny przydatności zbiorników do lokowania dwutlenku węgla może być szczególnie przydatne we wstępnym etapie poszukiwań potencjalnych kolektorów. Metoda ta jest nie tylko prosta i szybka, ale przede wszystkim pozwala zaoszczędzić czas i ograniczyć nakłady finansowe na szczegółowe analizy zbiorników, które mogą być tą metodą wykluczone z kolejnych etapów badań.
EN
Deep, saline aquifers used for the storage of CO2 must be covered by impermeable formations in order to prevent the migration of water into shallow zones. One of the methods of the assessment of the isolation degree of deep aquifers is the study of the chemical composition of waters. This method has been used at the first stage of the research program presented in this paper in the Bełchatów region (central Poland). Within this region several deep saline aquifers have been evaluated with respect to their storage potential represented by the geochemical maturity and isolation of saline waters measured by Na/Cl, Cl/Br ratios and TDS. Six types of groundwaters according to the degree of maturity and isolation have been identified, from the youngest waters with contact to meteoric waters (type 1 and 2) to the oldest, stagnant, highly mineralized brines (type 5 and 6). Saline aquifers of the Lower Triassic, Upper Triassic, Lower, Middle and Upper Jurassic, Cretaceous were examined. Between 518 and 4,530 m depth, these aquifers contain waters of 0.5–370 g/l of total dissolved solids (TDS). These waters are not an underground source of drinking water. The geochemical maturity of waters depends on the depth, the presence of the impermeable cover, the distance from the outcrops and also the presence of faults and fractures. Waters in the Jurassic reservoirs are of different types, from 1 and 2 which are not suitable for CO2 location to 3 and 4 (more suitable for CO2 location). The Triassic reservoirs are mostly of type 5 and 6 which are very suitable for CO2 location. This approach may be applied particularly in the preliminary studies not only due to its simplicity and low time consuming but also due to the savings of cost and time for the further studies of the reservoirs which may be excluded for storage of carbon dioxide using this method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.