Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rzeczywista emisja cząstek
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Exhaust emissions testing of vehicles under real driving conditions (real driving emissions, RDE) using portable exhaust emissions measurement systems (PEMS) was introduced a few years ago by the European Commission as a mandatory test during type approval and later also for in-service conformity. This paper compares results from mobile systems for measuring exhaust gas emissions (PEMS) with a stationary laboratory (BOSMAL’s Exhaust Emissions Testing Laboratory). The tests were carried out using a passenger car equipped with a spark ignition engine, which was tested on a chassis dynamometer over the WLTC cycle. The results showed that the differences between PEMS analysers and stationary analysers range from a few percent to a dozen or so percent, depending on the component and the measurement method.
EN
The following article presents the method of verification of EURO III standard in real conditions for special vehicles. The test object qualified as a special vehicle was tested in road conditions along a defined route, and then the obtained measurement results were compared to the exhaust emission standard (EURO III) applicable for this vehicle. A method of comparing the emission factors in road conditions with the indicators obtained on the engine dynamometer was proposed. An AVL mobile exhaust gas analyzers PEMS dedicated for RDE road tests were used in the research.
3
Content available Measurement of rail vehicles exhaust emissions
EN
The basic problem in terms of measuring exhaust emissions is the approval tests of traction vehicles, which are carried out on engine dynamometers. Therefore, it is impossible to obtain reliable results concerning their actual impact on the natural environment. It is therefore advisable to carry out the tests in real operation conditions, as is the case for road vehicles for which RDE (Real Driving Emissions) tests are carried out. The latest Stage V emission standards push for the introduction of this type of test, but no limit values for toxic exhaust gases have been established and no test guidelines have been defined for assessing actual emissions. This article describes the issues related to the legislative guidelines for non-road vehicles in force in Europe, as well as the measurement tools used, such as mobile equipment for measuring emissions of PEMS (Portable Emissions Measurement Systems) and newly developed emission gates. Additionally, the paper presents examples of locomotive exhaust emission tests in real operating conditions. The aim of the measurements was to assess the emission of toxic compounds against the relevant standards. The subject of the research was a diesel locomotive type T448.P equipped with a modernized internal combustion engine.
EN
The article presents the issues of energy recovery in the hybrid drive system of a vehicle. Road tests of a vehicle equipped with a hybrid powertrain were carried out in accordance with the recommendations of the RDE test. In these studies, measurements of braking energy recovery were carried out in urban, rural and motorway traffic conditions. The analysis of the obtained test results may constitute a premise for the creation of an appropriate strategy for the operation of the hybrid drive system in terms of meeting the requirements of the currently prepared Euro 7 standard.
EN
In Poland, the number of vehicles owned per capita is systematically increasing. There is also a noticeable increase in traffic in large urban agglomerations. This creates a number of problems, such as difficulties in finding a parking spot. Then it becomes necessary to search for a long time to stop, which is correlated with higher emission of harmful substances and energy consumption. The aim of the work is a multi-criteria analysis of the selection of a parking spot at a shopping center focused on travel times, pollutant emissions and fuel consumption. In addition, consideration was given to the selection of the optimal parking spot. The tests were carried out in Real Driving Conditions similar to Real Driving Emissions testing. The procedure, currently used as an extension of the type-approval tests, reflects the actual exhaust emissions from vehicles more accurately than tests under laboratory conditions. Specialized PEMS (Portable Emissions Measurement System) apparatus was used for the measurements.
6
EN
Testing of real driving emissions (RDE) with portable emission measuring system (PEMS) in an appropriate road circuit became an obligatory element of new type approval of passenger cars since September 2017. In several projects the Laboratory for Exhaust Emissions Control (AFHB) of the Berne University of Applied Sciences (BFH) performed comparisons on passenger cars with different PEMS’s on chassis dynamometer and on road, considering the quality and the correlations of results. Particle number measuring systems (PN PEMS) were also included in the tests. The present paper informs about influences of E85 on RDE on two flex-fuel-vehicles, discusses some aspects of different ways of evaluation with different programs, shows comparison of different types of PN PEMS and represents the effects of simulation of slope on the chassis dynamometer.
EN
The solid particle number method was introduced in the European Union (EU) light-duty legislation for diesel vehicles to ensure the installation of the best-available technology for particles (i.e., wall-flow diesel particulate filters) without the uncertainties of the volatile nucleation mode and without the need of large investment for purchasing the equipment. Later it was extended to gasoline vehicles with direct injection engines, heavy-duty engines (both compression ignition and positive ignitions) and non-road mobile machinery engines. Real Driving Emissions (RDE) testing on the road with Portable Emissions Measurement Systems (PEMS) for particle number (and NOx) during type approval and in-service conformity testing was recently (in 2017) introduced for light-duty vehicles, and is under discussion for heavy-duty vehicles in-service conformity testing. This paper will summarize the existing legislation regarding solid particle number and discuss the on-going activities at EU level. The main focus at the moment is on improving the calibration procedures, and extending the lower detection size below 23 nm with interlaboratory exercises. In parallel, discussions are on-going to introduce testing at low ambient temperature, regeneration emissions in the light-duty regulation, a particle limit for other technologies such as gasoline port-fuel injection vehicles, and the feasibility of particle measurements to L-category vehicles (mopeds, motorcycles, tricycles and minicars). A short overview of periodical technical inspection investigations and the situation regarding non-exhaust traffic related sources with special focus on brakes and tyres will be described.
EN
The article compares data obtained in road tests with the latest legislative proposals relating to various applications of internal combustion engines. Passenger car emission tests have been performed several times on the same test route in accordance with the RDE procedure guidelines, for which a dozen or so criteria must be met, including the distance of each of the drive sections, their in the drive time and the dynamic characteristics of the drive. The analysis was also based on a two-dimensional operating density characterization, presented in the vehicle speed-acceleration coordinates. As a result, it was possible to compare dynamic properties, operating time density and, thus, to check the validity of conducted drive tests in terms of their feasibility and emission values. An exhaust emission related comparison of three types of powertrain have been presented: gasoline, diesel and hybrid in the RDE tests. The authors proposed a new form of presenting the road exhaust emissions results in relation to the carbon dioxide emission, referred to as a standardization of the emission results. The exhaust emissions from city buses fitted with different powertrains tested on an actual bus route and in the SORT test were also compared.
EN
The article discusses the possibility of determining the environmental indicators for vehicles of different categories in relation to CO2 emissions. These are called toxicity indicators because they concern the compounds: CO, THC and NOx. Three Euro V compliant vehicles with different propulsion systems types were used for the study: a 0.9 dm3 urban passenger car with a SI engine and a start-stop system, a 2.5 dm3 off-road vehicle with a CI engine, and a city bus with a hybrid drive system in series configuration and a CI engine with a displacement of 6.7 dm3. Measurements were made in actual operating conditions in the Poznan agglomeration using a portable emissions measurement system (PEMS). The paper presents the characteristics of the operating time shares of vehicles and propulsion systems as well as CO2 emissions depending on the engine load and crankshaft rotational speed for individual vehicles. The determined toxicity indicators allowed to indicate their usefulness, to make comparisons between tested vehicles, and to identify directions for further work on the application and interpretation of these indicators.
EN
The field of vehicular exhaust emissions is experiencing wide-ranging and rapid changes. Air quality is very high on the political agenda and pressure remains to limit and reduce greenhouse gas emissions from the road transport sector. In addition to limits being increasingly stringent, the list of parameters subject to legal limits are slowly expanding – and, most importantly, these limits must be met under a wide wide range of conditions. A range of strategies are available to overcome these difficulties, which was explored during the 5th International Exhaust Emissions Symposium (IEES) hosted at BOSMAL in May 2016. This paper reports and summarises the topics of the 5th IEES and attempts a synthesis on the current status of the field and what the coming years may hold for the automotive and fuel industries and other allied fields.
EN
In the present paper, the results and experiences of testing different PEMS on the chassis dynamometer and on-road are presented. In the first part of work the measuring systems were installed on the same vehicle (Seat Leon 1.4 TSI ST) and the results were compared on the chassis dynamometer in the standard test cycles: NEDC, WLTC and CADC. in the second part of work the nanoparticle emissions of three Diesel cars were measured with PN-PEMS. PN-PEMS showed an excellent correlations with CPC in the tests on chassis dynamometer and it indicated very well the efficiency of DPF in eliminating the nanoparticles in real world driving.
EN
At the beginning of the twenty-first century, one of the major challenges of humanity was to reduce the negative effects of civilization development. Besides the engines used in road vehicles there is a large group of engines for non-road applications. This group includes motor propelled vehicles not used on the road NRMM (Non-Road Mobile Machinery). Engines of these vehicles, among all of the non-road applications, are characterized by very specific working conditions that do not allow for them to be qualified for propulsion engines. The main problem with these vehicles is the particulate matter and nitrogen oxides emission. Rail vehicles operating conditions these requirements take by the similar way, as having a wide range of rolling stock markedly alters the environmental impact of these vehicles. Thus it becomes necessary to consider the issue of the method of evaluation of engine emissions in rail vehicles in terms of their actual operating conditions. Thus, efforts to assess the actual level of emissivity for rail vehicles and attempts to improve it are necessary and justified.
EN
The major global automotive markets have all set limits for exhaust emissions from new road vehicles, which have become increasingly stringent over the past few decades. There is also considerable pressure to reduce fuel consumption and CO2 emissions – around 80% of all new passenger cars sold globally are subject to some kind of energy efficiency regulation. Such legal requirements necessitate extensive R&D and testing and the entire field is undergoing a period of rapid change. Despite a recent trend towards harmonisation, at present significant regional differences exist, which vary from the analytical laboratory methods specified, the list of regulated pollutants, the numerical values of the emissions limits and the test cycles employed for engine and chassis dynamometer testing of vehicles and their powertrains. Here the key points are reviewed and strategies and technologies employed to deal with these emissions challenges are discussed. Incoming automotive emissions regulations including the WLTP and Real Driving Emissions are discussed and in conclusion likely directions in powertrain technology are identified.
EN
This paper summarizes the recent and ongoing work on real driving emissions of several automobiles with ordinary, non-flexible-fuel spark ignition engines, powered by alcohol-gasoline blends with higher concentrations of ethanol, n-butanol and isobutanol. On a Ford Focus automobile with a direct injection EcoBoost engine, powered by gasoline and its blends with 15% ethanol, 25% n-butanol and 25% isobutanol, particle size distribution were measured with an on-board fast mobility particle sizer along a 55 km route. Particle emissions were moderately reduced by ethanol and considerably by both butanol blends. On a Śkoda Fabia and Śkoda Felicia cars with indirect injection engines, powered by blends with higher concentrations of ethanol, n-butanol and isobutanol, particle emissions measured by a miniature on-board system were examined over a 13 km route. Blends of 30% and 50% of butanol had no or slightly positive effect on particle emissions. Blends of 70% ethanol and 85% n-butanol and 85% isobutanol, used with an auxiliary engine control unit, had no or slightly positive effect on particle mass, and reduced total particle length (roughly corresponding to lung deposited surface area) by about one half.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.