Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  roztwory porowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This research was conducted in the area of Wigry Lake, which is one of the largest and deepest lakes in Poland. It consists of several parts which differ in size, depth, number of islands, chemical composition of water and the nature of shores. To assess variations in chemical composition of the pore water and overlying water, seven research positions were selected. They belong to one of three zones: profundal, littoral and dystrophic. Water characteristics are presented in statistical approach, using the background concentrations determined by the probability method. Chemical composition of the overlying water taken from profundal locations is similar to that from littoral parts of the lake. These are multi-ion waters of HCO3–SO4–Ca, HCO3–SO4–Ca–Mg, HCO3–Ca, HCO3–Ca–Mg type. They have low mineralization (268–552 mg/dm3) and are weakly alkaline (pH from 7.49 to 7.77). The situation is different with the composition of the water taken from the dystrophic lake (SO4–Ca–Mg). These are low mineralization (28 mg/dm3) and acid waters (pH = 5.35). Dominant in pore solutions is multi-ion HCO3–Ca, HCO3–Ca–Mg or HCO3–SO4–Ca–Mg water with mineralization 445–2032 mg/dm3 and pH between 7.39–8.23 (littoral positions), HCO3–Ca–SO4 and HCO3–Ca–Mg water with mineralization 479–762 mg/dm3 and pH from 7.59 to 7.89 (profundal positions). Definitely different chemical compositions have pore water from dystrophic lake: hydrochemical type changes with depth, from the HCO3–SO4–Ca, via HCO3–SO4–Ca–Na and HCO3–SO4–K–Ca, to the HCO3–O4–Na–Ca. Their mineralization is very low (49–69 mg/dm3) and pH changes from 7.25 to 8.01.
PL
Celem przedstawionych badań było rozpoznanie charakteru interakcji odpadów górnictwa węglowego i odpadów elektrownianych na przykładzie składowiska odpadów elektrownianych Przezchlebie, gdzie po upływie 12 lat od momentu zamknięcia składowiska wystąpiło zakwaszanie odwodnionych odpadów elektrownianych i roztworów porowych oraz faza III wietrzenia, określana jako faza przesuniętego w czasie intensywnego uwalniania makroskładników i pierwiastków śladowych. Składowisko to po upływie 15 lat od momentu zamknięcia zostało przykryte warstwą odpadów powęglowych o miąższości od 1 do 3 m. Opróbowanie i badania wykonano po 13 latach od przykrycia składowiska. W pracy skoncentrowano się na badaniu (przy użyciu ICP-MS) roztworów porowych wydzielanych z próbek pobranych wzdłuż pionowych profili składowiska i symulacji hydrogeochemicznej wyników przy użyciu komputerowego programu hydrogeochemicznego USGS/PHREEQC Interactive v. 2.15.0. Stwierdzono, że przykrycie warstwy odpadów elektrownianych znajdujących się na etapie III procesów wietrzeniowych, świeżymi odpadami górniczymi i zasilanie ich wodami infiltracyjnymi z nadległej warstwy odpadów górniczych spowodowały ponowną alkalizację materiału i powrót stanu procesów równowagowych do etapu II (rozpuszczania się), a nawet etapu I (wymywania). Należy przypuszczać, że skutki zaznaczającego się zakwaszania warstwy odpadów powęglowych uwidocznią się w warstwie popiołów znacznie później, ale też ich intensywność, z uwagi na wystąpienie zewnętrznego czynnika zakwaszającego (kwaśnych wód infiltracyjnych), może być znacznie większa niż obserwowana w układzie naturalnym odpadów elektrownianych.
EN
This study was aimed at elucidating the mode of interaction of coal mining waste and coal ash, exemplified in the Przezchlebie fly ash impoundment, where 12 years after closure, acidification of dewatered material and pore solutions occurred, along with development of the phase III of weathering defined as time-delayed extensive release of macro-components and trace elements. 15 years after closure, the impoundment was covered with a layer of coal mining waste, 1–3 m thick. Sampling along vertical profiles was performed 13 years later. The study was focused on analysis (with use of ICP-MS) of pore solutions extracted from the samples and hydrogeochemical simulation of the obtained data with use of the USGS/PHREEQC Interactive v. 2.15.0 computer program. It was found that the cover of coal ash at the stage III of weathering transformations with freshly generated sulfidic mining waste and infiltration of water from the upper layer of coal mining wastes resulted in the renewed alkalization of coal ash and recurrence of a state of equilibrium processes to the phase II (dissolution), and even to the phase I (wash-out). Presumably, the effects of a marked acidification of the coal mining waste layer will be shown in the coal ash much later, but the process intensity due to occurrence of an external source of acidification (acid rock drainage- ARD) might be considerably stronger than that observed in the natural system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.