Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rozkład w trybie empirycznym
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Phonocardiogram (PCG) recordings contain valuable information about the functioning and state of the heart that is useful in the diagnosis of cardiovascular diseases. The first heart sound (S1) and the second heart sound (S2), produced by the closing of the atrioventricular valves and the closing of the semilunar valves, respectively, are the fundamental sounds of the heart. The similarity in morphology and duration of these heart sounds and their superposition in the frequency domain makes it difficult to use them in computer systems to provide an automatic diagnosis. Therefore, in this paper, we analyzed these heart sounds in the intrinsic mode functions (IMF) domain, which were issued from two time-frequency decomposition techniques, the empirical mode decomposition (EMD) and the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), with the aim of retrieving useful information on an expanded basis. The decomposition of PCG recordings into IMF allows representing the fundamental cardiac sounds in many oscillating components, increasing thus the observability of the system. Moreover, the time-frequency representation of PCG recordings could provide valuable information to automatically detect heart sounds and diagnose pathologies from characteristic patterns of these heart sounds in the IMF. The analysis was made through the variance and Shannon's entropy of the heart sounds, observed in time windows located among different IMF. In addition, we determined the frequencies ranges of the IMF from the decomposition of the PCG recordings using both techniques. Given that the frequency content of S1 and S2 is different but overlap each other, and the duration of these sounds are also different, these heart sounds were represented in different IMF with different variances and entropies, in both techniques, but the ICEEMDAN offers a more consistent decomposition of S1 and S2 (they were concentrated in IMF 4-6). The decomposition of PCG signals into IMF has allowed us to identify the frequency components of the IMF in which these sounds are found.
EN
Rotating machinery plays a significant role in industrial applications and covers a wide range of mechanical equipment. A vibration analysis using signal processing techniques is generally conducted for condition monitoring of rotary machinery and engineering structures in order to prevent failure, reduce maintenance cost and to enhance the reliability of the system. Empirical mode decomposition (EMD) is amongst the most substantial non-linear and non-stationary signal processing techniques and it has been widely utilized for fault detection in rotary machinery. This paper presents the EMD, time waveform and power spectrum density (PSD) analysis for localized spur gear fault detection. Initially, the test model was developed for the vibration analysis of single tooth breakage of spur gear at different RPMs and then specific fault was introduced in driven gear under different damage conditions. The data, recorded by means of a wireless tri-axial accelerometer, was then analyzed using EMD and PSD techniques and the results were plotted. The results depicted that EMD algorithms are found to be more functional than the ordinarily used PSD and time waveform techniques.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.