Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rozkład katalityczny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the framework of the presented doctoral thesis, different groups of a new generation of functionalized microporous and mesoporous inorganic materials were prepared. The studies included synthesis and post synthesis modification of: mesoporous silica (SBA-15) modified with metals by MDD method, hydrotalcite‑ -like materials, nanostructured Co-Ce-O systems, hierarchical materials originated from mesoporous silicas and Beta zeolite nanoparticles, mesoporous Beta zeolite obtained using mesotemplate-free method, ZSM-5 and Y zeolites calcined at different temperatures. Physicochemical properties of the obtained materials were studied by various techniques such as: low-temperature N2 sorption, X-ray diffraction, TG and ICP analyzes, EPR, IR-DRIFT and UV-vis-DR spectroscopies, SEM and TEM images, X-ray photoelectron spectroscopy, NH3-TPD and H2-TPR. The obtained samples were tested as catalysts in low-temperature (250–500°C) N2O decomposition. Nitrous oxide is one of the greenhouse gases with a very long lifetime in the atmosphere (about 150 years) and high Global Warming Potential (about 310 times of GWP of CO2). Nitric acid plants are the main source of N2O emission among chemical industry and the commercial technology for reduction of this emission, fulfilling all industrial needs, is still not available. Thus, extensive studies in this area are necessary to reduce the harmful impact of N2O on the environment. All the tested catalysts were active in N2O decomposition, however the best results were achieved over nanostructured Co-Ce-X systems obtained using reverse microemulsion method and SBA-15 modified with Rh and Cu, Fe, Ti or Al by MDD method. Over the Co-Ce-X samples 100% of N2O conversion was obtained at about 400°C, while for Rh modified SBA-15 at about 450°C. It was found that Co3O4 spinel (redox centers) is responsible for high activity of Co-Ce-X systems. However, activity of this catalyst was enhanced by the presence of ceria increasing the oxygen mobility on the catalyst surface.
PL
W ramach niniejszej rozprawy doktorskiej wykonano syntezę i modyfikację nowoczesnych, funkcjonalizowanych mikro- i mezoporowatych materiałów nieorganicznych. Badaniami objęto takie materiały jak: mezoporowata krzemionka (SBA-15) modyfikowana metalami przy użyciu metody MDD, materiały tlenkowe uzyskane na bazie hydrotakitu, nanometryczne układy tlenkowe Co-Ce-O, materiały o hierarchicznej strukturze porowatej otrzymane w wyniku impregnacji mezoporowatych krzemionek (typu SBA-15 i MCF) nanoziarnami zeolitu Beta, mezoporowaty zeolit Beta otrzymany metodą bez użycia szablonu mezoporów oraz zeolity ZSM-5 i Y kalcynowane w różnych temperaturach. Właściwości fizyko-chemiczne otrzymanych materiałów określono za pomocą takich technik jak: niskotemperaturowa sorpcja N2, dyfrakcja promieniowania rentgenowskiego, analizy TG i ICP, spektroskopie EPR, IR-DRIFT i UV-vis-DR, mikroskopia SEM i TEM, spektroskopia fotoelektronów wzbudzonych rentgenowsko (XPS) oraz techniki temperaturowo-programowane (NH3-TPD i H2-TPR). Otrzymane materiały zostały przebadane w roli katalizatorów niskotemperaturowego (250–500°C) rozkładu N2O. Podtlenek azotu jest jednym z gazów cieplarnianych o długim czasie życia w atmosferze (ok. 150 lat) i wysokim współczynniku GWP (ok. 310 razy większy od GWP dla CO2). Fabryki produkujące kwas azotowy( V) stanowią największe źródło emisji N2O spośród przemysłu chemicznego, a komercyjne technologie zmniejszające emisję tego szkodliwego tlenku do atmosfery nie są dostępne. Wszystkie przebadane katalizatory były aktywne w procesie rozkładu N2O, aczkolwiek największą aktywnością odznaczały się dwie grupy materiałów: nanometryczne układy Co-Ce-X otrzymane metodą odwróconej mikroemulsji oraz SBA-15 modyfikowany Rh i Cu, Fe, Ti albo Al metodą MDD. 100% konwersji N2O w obecności katalizatora Co-Ce-X osiągnięto w temperaturze ok. 400°C, a przy użyciu mezoporowatej krzemionki modyfikowanej Rh w temperaturze ok 450°C. Stwierdzono, że za wysoką aktywność próbek z serii Co-Ce-X odpowiedzialny jest spinel Co3O4 (centrum redox). Aczkolwiek jego aktywność została wzmocniona obecnością ceru zwiększającego mobilność tlenu na powierzchni katalizatora.
PL
Przedstawiono wyniki badań laboratoryjnych procesu termiczno-katalitycznego rozkładu sulfidu bis(2-chloroetylu) (iperytu siarkowego) w warunkach dynamicznych i statycznych na impregnowanych solami metali (Cu, Ag, Au i Fe) włókninach węglowych w temp. 80°C.
EN
Mustard gas was adsorbed on the Fe, Cu, Au and Ag saltsimpregnated activated C nonwovens under dynamic and static conditions at 80°C to study its catalytic decompn. in air stream. The Fe-contg. sorbent was the most active catalyst of the reaction.
EN
The aim of the work is the research on self-ignition phenomena in a hybrid rocket engine. The engine uses 98% hydrogen peroxide as oxidizer and HTPB (Hydroxyl-Terminated Poly-Butadiene) as fuel. The condition, that is essential to initiate self-ignition in this system, is the application of a catalytic reactor, which enables the decomposition process of liquid hydrogen peroxide into the mixture of steam and oxygen with the temperature 800-950 deg C. The research has been based on the use of different catalyst materials as well as various configurations of catalyst beds. During the research (hot tests) the following parameters are collected: pressure and temperature at the end of the catalyst bed and the thrust of the engine. The evaluation of the ignition delay (that is counted from the start of the HTP flow) is made on the basis of the chamber pressure as well as on the video recording of the fire test.
PL
Celem pracy jest badanie zjawiska samozapłonu stałego paliwa w rakietowym silniku hybrydowym. Silnik jest zasilanym 98% nadtlenkiem wodoru (utleniaczem) oraz HTPB (paliwem). Warunkiem, koniecznym do zainicjowania samozapłonu, jest w tym przypadku zastosowanie reaktora katalitycznego, który umożliwia rozkład ciekłego nadtlenku wodoru na mieszaninę pary wodnej i tlenu o temperaturze 800-950 °C. Badania zostały oparte o wykorzystanie różnych katalizatorów (materiałów nośnika i fazy aktywnej) oraz różnych konfiguracji reaktorów katalitycznych. Podczas badań – gorących testów – rejestrowane są: ciśnienie oraz temperatura na granicy komory katalitycznej i komory spalania, a także siła ciągu silnika rakietowego. Ocena czasu wystąpienia zapłonu (liczona od momentu uruchomienia przepływu HTP) jest dokonywana na podstawie zapisu przebiegu ciśnienia w komorze oraz rejestracji video.
EN
The paper presents results of research on the catalytic decomposition of 98% hydrogen peroxide, using special structures called composite catalyst beds. Such configuration of a catalyst bed can be applied in future green monopropellant thrusters for attitude control systems as well as self-ignitable and restart-able bipropellant engines. A number of catalyst samples, based on aluminum oxides as support and manganese oxides as the active phase, were prepared for testing of catalyst decomposition of 98%+ High Test Peroxide. The aim of the current stage of the test campaign is to select the most promising candidates for further research on 50mm long chamber. The selection is made on the basis of hot test results in which dynamics of decomposition is evaluated. The other criterion is the structural integrity of the catalyst, assessed after the hot test. Support that is susceptible to cracking cannot be qualified as applicable for the next stage of the investigation. The current research has shown that the crucial factor for performance of a catalyst is its specific surface area. The fastest pressure and temperature buildup has been reached for microporous γ-Al2O3 pellet.
5
Content available remote Wybrane możliwości zastosowania nanostruktur w inżynierii środowiska
PL
Obecnie ludzkość stoi przed wyzwaniami, jakie stanowią: remediacja środowiska, monitorowanie zanieczyszczeń oraz poszukiwanie czystych źródeł energii. W pracy prezentowane są perspektywy efektywnego zastosowania nanostruktur w katalitycznym i fotokatalitycznym rozkładzie zanieczyszczeń, w czujnikach toksycznych materiałów i w przyjaznych dla środowiska metodach wytwarzania energii z odnawialnych źródeł. Badania w dziedzinie nanotechnologii skupiają się na nanostrukturach, których wyjątkowe własności zależne od ich kształtów i rozmiarów pozwalają na szerokie potencjalne zastosowania. Wykorzystywanie nanostruktur umożliwia miniaturyzację urządzeń pracujących w różnych środowiskach np. w wodzie, powietrzu glebie, na wysypiskach śmieci i w innych zanieczyszczonych miejscach lub obiektach. Perspektywy zastosowań nanostruktur w inżynierii środowiska są interesujące dzięki ich szczególnym własnościom termicznym, mechanicznym, chemicznym, magnetycznym i optycznym. W pracy prezentowane są różne sposoby wykorzystania nanotechnologii. Spośród wielu perspektywicznych zastosowań nanostruktur, najbardziej interesujące w kontekście ochrony środowiska są następujące możliwości: katalityczny i fotokatalityczny rozkład toksycznych związków chemicznych, detekcja zanieczyszczeń, termoelektryczna konwersja energii oparta na zjawisku Seebecka i Peltiera jak również fotowoltaika. Użyteczne struktury, które mogą znaleźć zastosowania mają różnorodne formy. Mogą to być: nanocząstki Fe, TiO2, ZnO, nanokolumny ZnO pokryte radialnie przez kryształki TiO2 lub nanokolumny ZnO/V2O5, jak również zbudowane z CdS/CdTe, InP, Si, InP TiO2/metal szlachetny, nanorurki węglowe, nanodźwignie krzemowe, nanokompozyty typu half-Heuslers oraz z takich materiałów jak PbTe, CoSb3, BiTe3.
EN
Nowadays humanity faces with the challenge of environmental remediation, pollution monitoring and searching for clean energy sources. This paper presents the prospects for successful utilizing of nanostructures in environmental applications including catalytic and photocatalytic decomposition of contaminations, pollution sensing and production of clean energy. Nanotechnology researches focus on nanostructures which exceptional size and shape dependent properties allow for potential applications in many fields. Application of nanostructures provides possibility to miniaturise devices working in different environments like water, air, soil, landfills and other contaminated sites. There are interesting prospects for successful usage of nanoparticles in environmental engineering because of their specific thermal, mechanic, chemical, magnetic and optical properties. In this paper, different approaches of nanotechnology applications were presented Among many possible applications of nanostructures in the context of environmental protection, especially interesting are: catalytic decomposition of toxic chemicals, photocatalysis, accurate detection of contaminations, thermoelectric energy conversion based on Seebeck and Peltier effect, photovoltaics. The useful structures that can find applications have different forms like nanoscale iron particles, titanium dioxide semiconductor particles, ZnO nanoparticles, composites of nanostructures like ZnO nanocolumns covered radially by TiO2 nanocrystals and ZnO/V2O5, TiO2/nobel metal, carbon nanotubes, silicon nanocantilevers, nanocomposite materials including half-Heuslers, PbTe, CoSb3, BiTe3, nanopillars made of CdS/CdTe, InP, Si, InP nanocolumns.
PL
Praca przedstawia projekt rozwoju ekologicznego silnika rakietowego wykorzystującego wysoko stężony nadtlenek wodoru jako utleniacz i węglowodory jako paliwo. Projekt realizowany w ramach prac statutowych Instytutu Lotnictwa ma na celu budowę i przetestowanie jednostki napędowej umożliwiającej transfer satelitów telekomunikacyjnych z niskiej na geostacjonarną orbitę ziemską. Przedstawiono układ konstrukcyjny silnika wraz z opisem jego kluczowych elementów. W pracy zawarto również uproszczoną metodologię rozwoju projektu wraz z przykładowymi wynikami obliczeń. Projekt pozwolił na budowę i wstępne przetestowanie zaproponowanego silnika rakietowego, pozytywnie weryfikując postawione założenia. Obecnie trwają prace nad kolejną wersją tego typu jednostki napędowej, przystosowanej do realizacji badań laboratoryjnych.
EN
A nitric acid plant in Devnya, Bulgaria has implemented a project for catalytic decomposition of nitrous oxide which resulted in reducing N2O emissions from the plant and the overall N2O emissions from the industrial sector in Bulgaria. After implementing the catalyst in September 2005 till the end of 2011, a total amount of 3133 Mg N2O emissions has been measured while the supposed value of N2O emissions without the catalyst being installed would have been 9747 Mg which means a total reduction of 6614 Mg. The results from the research prove the emission reduction potential of the catalyst.
EN
A new laboratory system for hazardous waste destruction was tested at a laboratory scale. The experimental device consists of 7 units: an electrical furnace, a plasma reactor, a catalytic reactor, a water cooler, a neutraliser, a carbon adsorber and a fan. The experimental system could be built using different units depending on the waste composition with the aim to adopt the system to various kinds of wastes. The first step of the waste degradation was the thermal decomposition in argon flow. The second one was the oxidation of hydrocarbons formed in the first step using non-equilibrium plasma in the presence of oxygen. Finally, the gases leaving the plasma reactor were purified. Two types of wastes (solid and liquid) were degraded. The reduction of the mass of the waste samples was higher than 99%. The carbon dioxide was the main component of the gases that flowed out of the plasma reactor. The carbon oxide and hydrogen were present in these gases too. The condition of the oxidation of the hydrocarbons in the plasma reactor ought to be improved in the future study in order to attain a momentary concentration of CO in the gas stream leaving the experimental system (behind the fan) compatible with obligatory standards.
PL
Skonstruowano i wykonano nowy laboratoryjny układ aparaturowy dla rozkładu odpadów niebezpiecznych. Urządzenie składało się z 7 modułów (elektryczny piec do pirolizy, reaktor plazmowy, reaktor katalityczny, chłodnica, neutralizator, adsorber, wentylator), które mogą być zmieniane i dopasowywane w zależności od rodzaju odpadów. Na pierwszym etapie procesu, odpady ulegają rozkładowi termicznemu w piecu elektrycznym w obecności argonu. Powstałe podczas rozkładu termicznego węglowodory były utleniane w reaktorze plazmowym w obecności tlenu. Następnie gazy opuszczające reaktor plazmowy były oczyszczane. Celem pracy było przetestowanie układu laboratoryjnego w procesie rozkładu dwóch odpadów ciekłego (zużyty olej do pomp próżniowych) i stałego (przeterminowany odczynnik chemiczny - mannit). Redukcja masy próbek obydwu odpadów była wyższa niż 99%. Głównym składnikiem gazów po procesie utlenienia był CO2. W gazach wypływających z reaktora plazmowego występował również CO i H2. Stężenie CO było na tyle znaczące, że należy w przyszłych badaniach polepszyć warunki procesu spalania dla obniżenia tego stężenia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.