Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rozkład cenzurowany
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Missing data in test result tables can significantly impact the analysis quality, especially in relation to technical sciences, where the mechanism generating missing data is often non-random, and their presence depends on the non-observed part of studied variables. In such cases, the application of an inappropriate method for dealing with missing data will lead to bias in the estimated distribution parameters. The article presents a relatively simple method to implement in dealing with missing data generated as a result of the MNAR mechanism, which utilizes the censored random variable. This procedure does not modify the variable distribution form, which is why it ensures objective and efficient estimation of distribution parameters within studies affected by certain restrictions of technical or physical nature (censored distribution), with a relatively low workload. Furthermore, it does not require the application of specialized software. A prerequisite for using this method is the knowledge of the frequency and cause of missing data. The method for estimating the random variable censored distribution parameters was shown based on the example of studying the leachability of selected heavy metals from a hardening slurry. The analysis results were compared with classical methods for dealing with missing data, such as, ignoring missing data observations (listwise or pairwise deletion), single imputation and stochastic regressive imputation.
PL
Braki danych w tablicach wyników badań mogą w znaczący sposób wpływać na jakość analizy, szczególnie w naukach technicznych, gdzie mechanizm generujący braki danych często jest nielosowy, a ich występowanie zależy od części nieobserwowanej badanych zmiennych. W takich przypadkach zastosowanie nieodpowiedniej metody radzenia sobie z brakami danych prowadzi do obciążenia estymowanych parametrów rozkładu. W artykule przedstawiono stosunkowo prostą w implementacji metodę radzenia sobie z brakami danych powstałymi w wyniku mechanizmu MNAR wykorzystującą rozkład cenzurowany. Procedura ta nie modyfikuje postaci rozkładu zmiennej, przez co zapewnia obiektywne i skuteczne estymowanie parametrów rozkładu w badaniach dotkniętych pewnymi ograniczeniami natury technicznej lub fizycznej, przy stosunkowo niskim nakładzie pracy. Ponadto nie wymaga zastosowania specjalistycznego oprogramowania. Warunkiem koniecznym zastosowania metody jest znajomość częstości występowania braków danych oraz ich przyczyny. Sposób estymacji parametrów rozkładu cenzurowanego zmiennej losowej przedstawiono na przykładzie badania wymywalności wybranych metali ciężkich z zawiesiny twardniejącej. Wyniki analizy porównano z klasycznymi sposobami radzenia sobie z brakami danych: pominięciem obserwacji z brakami danych, imputacją oraz stochastyczną imputacją regresyjną.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.