Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rough integral
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Optimization in Discovery of Compound Granules
EN
The problem considered in this paper is the evaluation of perception as a means of optimizing various tasks. The solution to this problem hearkens back to early research on rough set theory and approximation. For example, in 1982, Ewa Orowska observed that approximation spaces serve as a formal counterpart of perception. In this paper, the evaluation of perception is at the level of approximation spaces. The quality of an approximation space relative to a given approximated set of objects is a function of the description length of an approximation of the set of objects and the approximation quality of this set. In granular computing (GC), the focus is on discovering granules satisfying selected criteria. These criteria take inspiration from the minimal description length (MDL) principle proposed by Jorma Rissanen in 1983. In this paper, the role of approximation spaces in modeling compound granules satisfying such criteria is discussed. For example, in terms of approximation itself, this paper introduces an approach to function approximation in the context of a reinterpretation of the rough integral originally proposed by Zdzisaw Pawlak in 1993. We also discuss some other examples of compound granule discovery problems that are related to compound granules representing process models and models of interaction between processes or approximation of trajectories of processes. All such granules should be discovered from data and domain knowledge. The contribution of this article is a proposed solution approach to evaluating perception that provides a basis for optimizing various tasks related to discovery of compound granules representing rough integrals, process models, their interaction, or approximation of trajectories of discovered models of processes.
2
Content available remote Sensor, Filter, and Fusion Models with Rough Petri Nets
EN
This paper considers models of sensors, filters, and sensor fusion with Petri nets defined in the context of rough sets. Sensors and filters are fundamental computational units in the design of systems. The intent of this work is to construct Petri nets to simulate conditional computation in approximate reasoning systems, which are dependent on filtered input from selected sensors considered relevant in problem solving. In this paper, coloured Petri nets provide a computational framework for the definition of a family of Petri nets based on rough set theory. Sensors are modeled with what are known as receptor processes in rough Petri nets. Filters are modeled as ukasiewicz guards on some transitions in rough Petri nets. A ukasiewicz guard is defined in the context of multivalued logic. ukasiewicz guards are useful in culling from a collection of active sensors those sensors with the greatest relevance in a problem-solving effort such as classification of a "perceived" phenomenon in the environment of an agent. The relevance of a sensor is computed using a discrete rough integral. The form of sensor fusion considered in this paper consists in selecting only those sensors considered relevant in solving a problem. The contribution of this paper is the modeling of sensors, filters, and fusion in the context of receptor processes, ukasiewicz guards, and rough integration, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.