Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rotating detonation engine (RDE)
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents the results of tests of helicopter turbine engine, where the classic combustion chamber was replaced with an innovative solution. In this chamber instead of the classic combustion deflagration, was generated a rotating detonation. Theoretical considerations expected to get a higher engine efficiency, because as the thermodynamic Fickett-Jacobs cycle, which can describe the working principle turbine engine detonation chamber, has a higher efficiency than a Brayton cycle, according to which the engines of conventional chamber are working. The appearance of detonation combustion was diagnosed basing on observation of the gas pressure flue in the chamber, using piezoelectric sensors. Before the detonation chamber was used in turbine engine, a series of problems on the various methods of initiation of detonation process and the procedures for controlling the flow rate into the chamber of air and fuel were solved. There was a test stand constructed, which used a helicopter turbine engine GTD-350, wherein the jugs combustion chamber was replaced with detonation chamber. A control system for the flow of fuel in the combustion chamber was developed: aviation kerosene Jet-A1 with addition of hydrogen. With its use obtained unfailing starts of chamber, also the engine running on the idle and on the flight range and accelerations at idle range to flight range. The possibility of the detonation combustion for a long time, especially in transient states - practically limited only by the capacity of fuel tanks – is the achievement of the research team.
PL
W pracy przedstawiono opis obliczeń projektowych i wykorzystanie metody kalorymetrycznej do wyznaczenie obciążeń cieplnych w komorze spalania silnika wykorzystującego zjawisko wirującej detonacji. Oszacowanie strumienia ciepła na jaki narażone będą ścianki komory spalania to jeden z kluczowych parametrów z jakim należy się zmierzyć w trakcie opracowywania jednostki napędowej. Z tego względu opracowano stanowisko badawcze, dzięki któremu możliwe będzie wyznaczenie wartości strumieni ciepła, na podstawie zmiany entalpii czynnika chłodzącego. W oparciu o wyniki eksperymentalne opracowany zostanie model wymiany ciepła, który wykorzystany zostanie podczas rozwijania kodów nume-rycznych.
EN
The work will be focused on heat transfer to the combustion chamber wall of continuous detonation wave engine. Like in conventional rocket engines, heat flux is a design key factor. Implementation of semi-empirical model of heat transfer (calculation of heat transfer coefficient) into REFLOPS and collected experimental data will give a basis for comparison and verification. These results will be important for further development of numerical codes.
EN
From 2010 Warsaw University of Technology (WUT) and Institute of Aviation (IoA) jointly implement the project under the Innovative Economy Operational Programme entitled ‘Turbine engine with detonation combustion chamber’. The goal of the project is to replace the combustion chamber of turboshaft engine GTD-350 with an annular detonation chamber. During the project, the numerical group that aims to develop computer code allowing researchers to simulate investigated processes has been established. Simulations provide wide range of parameters that are hardly available from experimental results and enable better understanding of investigated processes. Simulations may be also considered as a cheap alternative for experiments, especially when testing geometrical optimizations. In this paper the analysis of simulation results of the combustion chamber of the Rotating Detonation Engine (RDE) investigated at the IoA in Warsaw is presented. Primarily, REFLOPS USG which has become a fundamental numerical tool in the research of the RDE at the IoA is briefly described and governing equations and numerical methods used are shortly presented. Some aspects of numerical simulations of the RDE, related to selection of combustion mechanism, and an initiation of rotating detonation are provided. Secondly, results of simulations of inviscid gas with numerical injectors of hydrogen are compared with available experimental results. Three different wave patterns are identified in numerical solution and briefly described. Results of simulations are compared to experimental results in combustion chamber. Results presented in this paper are part of the project UDA-POIG.01.03.01-14-071 ‘Turbine engine with detonation combustion chamber’ supported by EU and Ministry of Regional Development, Poland.
EN
This paper describes the development of a computational code REFLOPS USG (REactive FLOw solver for Propulsion Systems on UnStructured Grids) based on the Favre averaged Navier-Stokes equations with chemical reactions for semi-ideal multicomponent gas to predict the structure and dynamics of three-dimensional unsteady detonation as it occurs in the Rotating Detonation Engine (RDE). This work provides an overview of second order accurate in time and space finite volume method applied to conservation equations and its implementation on unstructured self-adaptive tetrahedral or hexahedral three-dimensional cell-centred meshes. The inviscid fluxes are given by the Riemann solver and stabilization is ensured by the proper limiters inherited from the TVD theory or gradient based limiters. The stiff equations of chemical kinetics are solved by use of implicit DVODE (Double precision Variablecoefficient Ordinary Differential Equation solver, with fixed-leading-coefficient implementation) routine or by explicit Chemeq2 routine. Additional improvements are incorporated into the code such as parallelization in OpenMP and implementation of NVIDIA CUDA technology. REFLOPS USG has become a fundamental numerical tool in the research of RDE at the Institute of Aviation in Warsaw, in frame of Innovative Economy project UDA-POIG.01.03.01-14-071 ‘Turbine engine with detonation combustion chamber’ supported by EU and Ministry of Regional Development, Poland. The simulations presented in this paper are based on inviscid or viscous multicomponent semi-ideal gas flow with chemical reactions. Due to high computational costs only simple chemical reaction mechanisms are used here.
EN
The paper describes reserch on posibility of use rotating detonation in rocket engine. The basic properties of the wave propagation were studied. Next the parameters of the rocket engine based on the rotating detonation were measured. The experimental reserch were supprote by numerical simulations which allow detailed analysisi of the structure of the detonation wave and the flow in the detonation chamber.
PL
Artykuł prezentuje wyniki badań nad możliwościom zastosowania detonacji wirującej w silniku rakietowym. W pierwszej fazie badań określono podstawowe własności takiej fali detonacyjnej. Następnie dokonano pomiarów osiągów silnika rakietowego wykorzystującego detonację wirującą. Badania doświadczalne były uzupełnione obliczeniami numerycznymi w celu określenia szczegółów struktury wirującej detonacji i przepływu w komorze detonacyjnej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.