Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rotating detonation engine
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the paper short information about advantages of introduction of detonation combustion to propulsion systems is briefly discussed and then research conducted at the Łukasiewicz - Institute of Aviation on development of the rotating detonation engines (RDE) is presented. Special attention is focused on continuously rotating detonation (CRD), since it offers significant advantages over pulsed detonation (PD). Basic aspects of initiation and stability of the CRD are discussed. Examples of applications of the CRD to gas turbine and rocket engines are presented and a combine cycle engine utilizing CRD are also evaluated. The world's first rocket flight powered by liquid propellant detonation engine is also described.
EN
Numerical studies on detonation wave propagation in rotating detonation engine and its propulsive performance with one- and multi-step chemistries of a hydrogen-based mixture are presented. The computational codes were developed based on the three-dimensional Euler equations coupled with source terms that incorporate high-temperature chemical reactions. The governing equations were discretized using Roe scheme-based finite volume method for spatial terms and second-order Runge-Kutta method for temporal terms. One-dimensional detonation simulations with one- and multi-step chemistries of a hydrogen-air mixture were performed to verify the computational codes and chemical mechanisms. In two-dimensional simulations, detonation waves rotating in a rectangular chamber were investigated to understand its flowfield characteristics, where the detailed flowfield structure observed in the experiments was successfully captured. Three-dimensional simulations of two-waved rotating detonation engine with an annular chamber were performed to evaluate its propulsive performance in the form of thrust and specific impulse. It was shown that rotating detonation engine produced constant thrust after the flowfield in the chamber was stabilized, which is a major difference from pulse detonation engine that generates repetitive and intermittent thrust.
PL
Przedstawiono badania numeryczne propagacji fali detonacyjnej w wirującym silniku detonacyjnym oraz jego wydajności pędnej z jedno- i wielostopniową mieszanką chemiczną na bazie wodoru. Kody obliczeniowe opracowano w oparciu o trójwymiarowe równania Eulera w połączeniu z pojęciami źródłowymi, które obejmują wysokotemperaturowe reakcje chemiczne. Obowiązujące równania zostały zdyskredytowane przy użyciu metody skończonej objętości opartej na schemacie Roe'a dla terminów przestrzennych oraz metody Runge-Kutta drugiego rzędu dla terminów czasowych. W celu weryfikacji kodów obliczeniowych i mechanizmów chemicznych przeprowadzono jednowymiarowe symulacje detonacji z jedno- i wieloetapowymi chemikaliami mieszaniny wodoru i powietrza. W symulacjach dwuwymiarowych badano fale detonacyjne obracające się w komorze prostokątnej w celu zrozumienia jej charakterystyki pola przepływu, gdzie udało się uchwycić szczegółową strukturę pola przepływu zaobserwowaną w doświadczeniach. Przeprowadzono trójwymiarowe symulacje dwufalowego wirującego silnika detonacyjnego z komorą pierścieniową w celu oceny jego właściwości pędnych w postaci ciągu i impulsu właściwego. Wykazano, że wirujący silnik detonujący wytwarza stały ciąg po ustabilizowaniu się pola przepływu w komorze, co stanowi istotną różnicę w stosunku do silnika detonującego impulsowo, który wytwarza powtarzalny i przerywany ciąg.
3
Content available remote Numerical calculation of rotating detonation chamber
EN
ANSYS FLUENT 14 supplied the CFD tools used in the numerical calculation of rotating detonation combustion. During calculations, various fuel injection methods and configurations of combustion chamber were applied in an attempt to obtain stable and correct detonation propagation results in a separated fuel-air injection system (non-premixed combustion model). However, FLUENT was not originally designed for detonation combustion and the failure to achieve re-initiation of detonation after collision was always the core issue in the non-premixed combustion model. Thus, this paper mainly focuses on research into the behavior of stable continuously rotating detonation in premixed combustion cases. The analysis of stable continuously rotating detonation behaviors and structures was carried out with different boundary conditions and mesh cells. The pressures were measured by using a number of artificial sensors inserted near the chamber outside surface in various axial and/or circumferential directions. With those key results in the case of premixed combustion, we were able to comparably conclude that stable rotating detonation would also be generated if the refilling process were properly exhibited in non-premixed combustion. The paper finishes with evaluations and conclusions regarding general detonation behaviors and performances.
EN
Integrated rocket ramjet engine is adapted to aircraft propulsion and supersonic missiles moving at the speed of 8 Ma. The engine’s construction enables flexibly benefit from both types of drive depending on the conditions of the flight. The ejector mode of operation applicable to Mach numbers smaller than 2 cooperate with the rocket engine positioned in flow channel. Secondary air stream enters the engine through the convergent divergent nozzle and supplies the air to the ejector and booster. Rocket engine using the ejector effect would be used only in the phase of accelerating an object to the supersonic speed and then the drive would gradually shift to ramjet. The range of speed for the ramjet mode is 2-6 Mach. The prototype of the rocket ramjet engine of over 1300 N is equipped with annular combustion chamber in which phenomena of rotating detonation as well as the aero spike nozzle were used. Both the test stand as well as the engine is adapted to trials suitable to the conditions of a flight at the speed of 1.4 Ma. The test stand is powered by compress air coming from the instalment set up in the earth test bed and by oxygen and methane at a pressure of 10 bar. The rig is designed for functional tests of prototype, areas of the creation of mixture of firearms used to measuring and the range of stable functioning of the engine in the ramjet mode. Moreover, the measured parameters in gas supply installations as well as the temperature and pressure in the combustion chamber and thrust created by integrated rocket ramjet engine are measured.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.