Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rocket propellant
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono rezultaty poszukiwań i analiz zagranicznej literatury patentowej w zakresie ładunków stałych paliw rakietowych spalanych czołowo, z osadzonymi w nich poosiowo drutami oraz sposobów otrzymywania tego rodzaju ładunków. Wprowadzenie do masy paliwa rakietowego drutów o wysokim przewodnictwie cieplnym powoduje kilkukrotny wzrost szybkości spalania. Na przykład, dzięki zastosowaniu drutów wykonanych ze srebra szybkość spalania ładunku paliwa wzrasta nawet 5 krotnie w porównaniu z szybkością spalania samego paliwa rakietowego (bez drutów). W wyniku poszukiwań i analiz publikacji patentowych, wyselekcjonowano kilkanaście opisów patentowych wynalazków z przedmiotowego zakresu, z datą pierwszeństwa z lat 50, 60, 70 i 80 ubiegłego wieku, zgłoszonych w USA, Francji, Wielkiej Brytanii i Japonii. Mimo ponad 60 letniej historii tematyka prezentowana w artykule, jest bardzo rzadko poruszana. Informacje zawarte w znalezionych opisach patentowych powinny zainteresować, zwłaszcza technologów zajmujących się wytwarzaniem ładunków stałych paliw rakietowych oraz konstruktorów silników rakietowych zaelaborowanych takimi paliwami.
EN
Results of investigations and studies of foreign patent literature on the manufacture of end-burning charges of solid rocket propellants with axially embedded wires are presented in the paper. The introduction of wires, possessing a high thermal conductivity level, into the stuff of rocket propellant makes the burning velocity increase by several times. For example the application of silver wires boosts the propellant burning velocity up to 5 times comparing to the same propellant without the wires. In the result of a research work and studies of patent publications a dozen of patent descriptions of inventions on thesubject scope was selected, with the date of priority,issued in the 50-ties, 60-ties, 70-ties and 80-ties of the former century, applied in the USA, France, Great Britain and Japan. The subject of this paper has been very seldom presented for over 60 years. The data included in the patent descriptions seems to be very interesting, particularly for technologists dealing with manufacture of rocket solid propellant charges and for designers of rocket motors using such propellants.
PL
W pracy przedstawiono wyniki badań wybranych właściwości fizykochemicznych i balistycznych heterogenicznych stałych paliw rakietowych (HSPR) na bazie kauczuku HTPB, chloranu(VII) amonu oraz pyłu aluminiowego różniących się zawartością i rodzajem modyfikatora szybkości spalania (2,2`-bis (etyloferrocenylo) propan (katocen), Fe2O3, Cu2Cr2O5). Badania właściwości balistycznych przeprowadzono w układzie laboratoryjnego silnika rakietowego (LSR), w którym spalano prostopadłościenne kształtki HSPR pozwalające metodą pośrednią na określenie szybkości spalania w funkcji ciśnienia produktów spalania w komorze LSR.
EN
This paper presents some results of tests of selected physicochemical and ballistic properties of heterogeneous solid rocket propellants (HSRP) based on HTPB rubber, chlorate(VII) ammonium and aluminium dust with different contents and type of burning rate modifier (2,2`-bis(ethylferrocenyl) propane (catocene), Fe2O3, Cu2Cr2O5). A laboratory rocket motor (LRM) was used for testing ballistic properties of the rectangular slabs of HSR Pin order to assess by an indirect method the burning rate of the HSPR slabs depending on the pressure of combustion products in the LRM chamber.
PL
Wyniki badań zmian lepkości zawiesiny heterogenicznego paliwa rakietowego (ηzp) o składzie: kauczuk polibutadienowy zakończony grupami hydroksylowymi (R45M), adypinian dioktylu jako plastyfikator, środek utwardzający diizocyjanian dimerylu i dodatki, takie jak 2,2’-bis(etyloferrocenylo)propan, 1,1’-izoftaloilo-bis(2-metyloazyrydyna), lecytyna, glicerolowy roztwór kwasu szczawiowego i antyutleniacz (2.2’-metylenobis(6-tert-butylo-4-metylofenol) oraz chloran(VII) amonu i pył aluminiowy od czasu (t) i temperatury (T) wykazały, że zależność tę można opisać równaniem w postaci ln[ηzp(t, T)] = ln(Aη) + Eη/(R∙T) + t Akη exp [-Ekη/(R∙T)], w którym Aη, Akη, Eη, Ekη są stałymi doświadczalnymi. Zawiesina paliwa charakteryzuje się odpowiednio długim czasem życia.
EN
A mixt. of hydroxyl-terminated polybutadiene, dioctyl adipate plasticizer, dimeryl diisocyanate curing agent, NH₄ClO₄'Al powder and 2,2’-bis(ethylferrocenyl)propane, lecithin additive, glycerol soln. of oxalic acid, 1,1’-isophthaloyl bis(2-methylaziridine) and (2,2’-methylene-bis(6-tert-butyl-4-methylphenol) antioxidant was prepd. as heterogeneous propellant slurry and studied for viscosity as function of time and temp. The results were presented as logarithmic equations. The propellant slurry had a relatively long pot life time.
PL
W artykule przedstawiono sposób badania stałych paliw rakietowych metodą dynamicznej analizy mechanicznej (DMA) w oparciu o porozumienie STANAG 4540. Scharakteryzowano metodę DMA oraz opisano prawidłowe warunki eksperymentu zalecane przez STANAG oraz instrukcje obsługi urządzenia. Próbka stałego dwubazowego paliwa rakietowego została zbadana za pomocą urządzenia Netzsch DMA 242C. Dynamiczne właściwości mechaniczne takie jak moduł zachowaw-czy (E’), moduł stratności (E”) oraz tgδ zostały zmierzone w zakresie temperatury od -120° C do +110° C, przy prędkości ogrzewania wynoszącej 1K/min. Zastosowano trzy częstotliwości uginania próbki wynoszące 0,1 Hz, 1 Hz oraz 10 Hz. Szczególną uwagę poświęcono określeniu temperatury zeszklenia badanego paliwa.
EN
The article describes dynamic mechanical analysis (DMA) test procedure of solid rocket propellants on the basis of STANAG Agreement 4540. DMA principle of operation and proper experimental conditions recommended by the STANAG and DMA manual are described. A sample of solid rocket propellant was tested by using Netzsch DMA 242C analyzer. Dynamic mechanical properties such as the storage modulus (E’), loss modulus (E”) and tanδ were measured within temperature range from -120° C to +110° C at heating rate of 1K/min. The sample was tested at three bending frequencies of 0.1, 1.0 and 10.0 Hz. Special attention was paid to the determination of tested propellant glass transition temperature.
EN
A theoretical ballistic analysis of tubular rocket propellants burning in the progressive mode was carried out with the objective of ascertaining the effects of the burning rate index on the average pressure and the total burning time of the pressure time profiles. A constant ‘H’ is introduced to obtain close-form expressions for the initial pressure, the maximum pressure, the area under the pressure time profile, the total burning time and the average pressure. The derivation of the total burning time for a progressive burning tubular rocket propellant is a new approach described in this paper. It is observed that the average pressure during propellant combustion varies with the burning rate index. A higher burning rate index of the propellant leads to a lower average pressure for lower burning rate propellants (8 mm/s at 7 MPa) and a higher average pressure for higher burning rate propellants (10 mm/s at 7 MPa). A unique situation occurs for an intermediate burning rate propellant (9 mm/s at 7 MPa), where the maximum pressure was obtained theoretically for a specific value of the burning rate index (0.69).
PL
Wartykule zwrócono uwagę na możliwość wykorzystania nadtlenku wodoru (H2O2) klasy HTP (do zastosowań napędowych – tzw. „High Test Peroxide” lub też „Rocket Grade Hydrogen Peroxide”) jako atrakcyjnej alternatywy dla obecnie stosowanych materiałów pędnych na platformach satelitarnych. Najpowszechniejszymi materiałami pędnymi aktualnie wykorzystywanymi jako napędy kosmiczne w satelitach są hydrazyna i jej pochodne (paliwa) oraz czterotlenek dwuazotu (utleniacz). Są to substancje odznaczające się bardzo wysoką toksycznością oraz korozyjnością. Zwłaszcza stosowanie hydrazyny poddawane jest coraz ostrzejszym restrykcjom w Europie (Rozporządzenie Parlamentu Europejskiego w sprawie rejestracji, oceny, udzielania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów – REACH). Rosnące trudności formalne związane z użytkowaniem hydrazyny oraz relatywnie wysokie koszty zabezpieczeń dla personelu naziemnego, sprawią, że sektor napędów satelitarnych intensywnie poszukuje odpowiednich zamienników tej substancji. Ocenia się, że nadtlenek wodoru klasy HTP o stężeniu 98% jest jednym z najpoważniejszych kandydatów do tego, aby ją skutecznie zastąpić. Nadtlenek wodoru klasy HTP jest silnym ciekłym utleniaczem i jednocześnie, relatywnie najbezpieczniejszym, rakietowym jednoskładnikowym materiałem pędnym. Niestety, obecnie substancja ta, zwłaszcza wmniejszych ilościach, jest praktycznie niedostępna na rynku europejskim. Skutkiem tego ośrodki akademickie oraz jednostki naukowo-badawcze, które wykazują zainteresowane są badaniami z wykorzystaniem HTP, nie są w stanie nabyć nawet niewielkich ilości HTP w rozsądnej cenie. Dlatego też w Instytucie Lotnictwa opracowano technologię uzyskiwania laboratoryjnych do technicznych ilości względnie taniego nadtlenku wodoru o stężeniu powyżej 80% (nawet 98%+) oraz odpowiednio wysokiej czystości.
EN
The paper presents modern approach as well as the potential of “novel” chemical “green” rocket propellant for satellite applications known as hydrogen peroxide of HTP class. The technology of obtaining the substance has been fully developed at IoA. However, the compound already is under experimental research for its practical utilisation within space propulsion applications. This liquid rocket propellant may be successfully used in thrusters and engines in RCS’s. What more, recently has become promising alternative for utilised so far toxic propellants. The novel (in terms of its quality and renewed interest) high-energy liquid green propellant called HTP is 98% aqua solution of hydrogen peroxide (High Test Peroxide). It does not suffer from the disadvantages typical for currently used rocket propellants and is now being extensively tested in many other space propulsion research centres around the world. The paper also presents the potential connected to the use of 98% HTP, also with comparison to the other liquid currently commonly used and very toxic propellant - hydrazine. Additionally, the authors try to prove that 98% HTP enables, due to low costs, the extensive research for alternative “green” propulsion systems may not always have to be done by the relevant industry itself but also by academia, research institutes and smaller private companies.
EN
Various chemical reactions and physical processes (such as stabilizer consumption, migration and evaporation of nitroglycerine, decomposition of nitroglycerine and nitrocellulose, etc.) take place in double based rocket propellants grains over the time, even under ambient storage conditions. The overall effect of these reactions and processes are changes of physical, chemical, thermal, ballistic and mechanical properties of rocket propellants with storage time, i.e. the reduction of the propellants performances and safe service life. The aim of this work was to evaluate the mechanical changes of rocket propellants – sustainers, built in in-service antitank guided missiles systems, induced by natural ageing at ambient conditions during up to 35 years of storage. The mechanical and viscoelastic properties were tested using a dynamic mechanical analyser, an uniaxial tensile and compression tester, and a notch toughness tester. The results have shown that the changes of the studied mechanical and viscoelastic properties are evident, although the results of the tests are rather scattered (as a consequence of measuring uncertainty, different ageing histories of propellants, etc.) or changes of some properties are not too pronounced. For example, after 15 years of storage at ambient conditions the glass transition temperature increases for about 5 C, the tan δ in the glass transition region decreases for about 5%, the storage and loss modulus at 25 °C increase for about 15%, Young modulus at 23 C increases up to 30%, the notch toughness at -30 C decreases up to 15%, etc. Along with these tests, the stabilizer content determination and proving ground ballistic tests were also done.
8
Content available remote Stałe paliwa rakietowe - stan obecny, perspektywy rozwoju
PL
W artykule przedstawiono obecny stan wiedzy i perspektywy rozwoju w dziedzinie stałych paliw rakietowych. Klasyczne stałe paliwa rakietowe homogeniczne to paliwa dwubazowe zawierające NC, NG stabilizatory i modyfikatory – heterogeniczne to paliwa, których podstawowymi składnikami są: utleniacz (NA), ciekły kauczuk z grupami funkcyjnymi (PBAN, CTPB, HTPB) i modyfikatory. Nowocześniejsze z tych drugich tzw. Wysokoenergetyczne zawierają dodatkowo proszki metali (np. Al., Mg) i/lub nitroaminy heterocykliczne (HX, oktogen, HNIW). Z kolei paliwa z energetycznymi lepiszczami (NC, NG, TEGDN, BTTN, TMETN) zawierające utleniacze: NA, HX, oktogen, to paliwa znane z literatury jako: CMCDB, EMCDB, XLDB, NEPE. Przedstawiono także wyniki obliczeń parametrów termochemicznych perspektywicznych paliw rakietowych w porównaniu z klasycznymi oraz dokonano oceny osiągnięć krajowych w stosunku do światowych.
PL
W artykule przedstawiono wyniki badań silników rakietowych SR-M-ŁWD. Omówiono niekorzystne zmiany zachodzące w procesie składowania i ich wpływ na bezpieczeństwo eksploatacji silników rakietowych.
PL
W artykule przedstawiono dotychczasowy stan badań w zakresie stałości paliw rakietowych homogenicznych i złożonych (pirotechnicznych) oraz prognozowanie okresu ich bezpiecznej eksploatacji. Przedstawiono również możliwości zastosowania nowoczesnych technik analiz termicznych DTA/TGA do oceny zmian zachodzących w paliwach złożonych podczas ich eksploatacji wraz z uzyskanymi wynikami badań.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.