Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rock-like material
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Cyclic loading–unloading creep behavior of composite layered specimens
EN
Soft and hard interbedded rocks show obvious time-dependent deformation after deep tunnel excavations, and it is therefore necessary to research the mechanical behavior of the layered rock. However, it is hard to obtain ideal transversely isotropic rocks in fields, so rock-like specimens were poured by using artificial materials. Cyclic loading–unloading creep experiments were performed on the artificial layered cemented specimens with various layer angles (0°, 30°, 60° and 90°) at a 20 MPa confinement. Time-independent deformations and time-dependent deformations of the rock-like specimens were distinguished to investigate the visco-elasto-plastic deformation characteristics. Instantaneous elastic strain and instantaneous plastic strain had linear correlations with stress ratio, whereas creep strain, including visco-elastic strain and visco-plastic strain, increased nonlinearly with an increasing stress ratio. The specimens with a small layer angle had more noticeable time-independent and time-dependent deformations and larger steady-state creep rates than those of the specimens with a large layer angle. Attenuation creep and secondary creep could be observed at relative low stress levels, whereas accelerating creep until failure occurred at the creep failure stress level. The time for creep failure can be predicated according to the axial steady-state creep rate or volumetric creep curve. Damage in the rock-like specimens showed linear correlation with the stress ratio. Dip angle has a significant effect on the creep failure mode under cyclic loading–unloading conditions.
EN
Extensive efforts have been made to gain a better understanding of the failure behaviour of rocks and rock-like materials, but crack propagation and failure processes under compressive-shear loading have not yet been comprehensively investigated. To address this area of research, the peak shear strengths (τ) and failure processes of specimens with multiple joints are studied by lab testing and particle flow code (PFC2D). Four types of failure modes are observed: (a) shear failure through a plane (Mode-I), (b) intact shear failure (Mode-II), (c) oblique shear crack connection failure (Mode-III), and (d) stepped path failure (Mode-IV). The failure mode gradually transformed to Mode-III as α (joint inclination angle) increases from 0° to 90° in the specimens. In addition, with increasing joint distance (d) in the specimens, the failure mode changes to Mode-II. As the non-overlapping length between joints (c) in the specimens increases, the failure mode changes to Mode-IV. The joint geometry has a major influence on the shear strength of the jointed specimens. The peak shear strength of specimens with different joint inclination angles is obtained when α = 45°. Additionally, the peak shear strength increases as the joint distance (d) and non-overlapping length (c) increase.
EN
The authors studied the fracture mechanical properties under half-symmetric loading in this paper. The stress distribution around the crack tip and the stress intensity factor of three kinds of notched specimens under half symmetric loading were compared. The maximum tensile stress σmax of double notch specimens was much greater than that of single notch specimens and the maximum shear stress τmax was almost equal, which means that the single notch specimens were more prone to Mode II fractures. The intensity factors KII of central notch specimens were very small compared with other specimens and they induced Mode I fractures. For both double notch and single notch specimens, KII was kept at a constant level and did not change with the change of a/h, and KII was much larger than KI. KII has the potential to reach its fracture toughness KIIC before KI and Mode II fractures occurred. Rock-like materials were introduced to produce single notch specimens. Test results show that the crack had been initiated at the crack tip and propagated along the original notch face, and a Mode II fracture occurred. There was no relationship between the peak load and the original notch length. The average value of KIIC was about 0.602 MPa×m1/2, and KIIC was about 3.8 times KIC. The half symmetric loading test of single notch specimens was one of the most effective methods to obtain a true Mode II fracture and determine Mode fracture toughness.
PL
W niniejszej pracy przedstawiono właściwości mechaniczne pękania materiałów skalnych pod półsymetrycznym obciążeniem, w wyniku połączenia analizy teoretycznej, symulacji numerycznych oraz badań eksperymentalnych. W celu ujawnienia mechanizmu uszkodzenia, przygotowano trzy rodzaje próbek z karbem pod półsymetrycznym obciążeniem i zbadano rozkład naprężeń wokół pęknięcia podczas procesu obciążenia. Przyjęto metodę integralnej interakcji oprogramowania elementów skończonych ANSYS w celu obliczenia współczynnika intensywności naprężenia (SIF). Ponadto, wprowadzono pojedynczy element pęknięcia oraz element płaszczyzny 183 w strefie bez pęknięć. Zgodnie z analizą numeryczną i wynikami badań eksperymentalnych, maksymalne naprężenie rozciągające podwójnych próbek z karbem okazało się znacznie większe niż w przypadku pojedynczych próbek z karbem, a ich maksymalne naprężenie ścinające było prawie takie samo, co oznacza, że pojedyncze próbki z karbem były bardziej podatne na pęknięcie w trybie II. Współczynniki intensywności KII środkowych próbek z karbem były bardzo niskie w porównaniu z innymi próbkami oraz tymi, które wywoływały pęknięcia w trybie I. Zarówno w przypadku próbek z podwójnym i pojedynczym karbem, KII zostało utrzymane na stałym poziomie i nie uległo zmianie wraz ze zmianą a/h, a ponadto KII było znacznie większe niż KI. KII może potencjalnie osiągać odporność na kruche pękanie KIIC przed KI. W rezultacie mamy do czynienia z pęknięciami w trybie II. Wprowadzono materiały skalne w celu wytworzenia próbek z pojedynczym karbem. Pęknięcie rozpoczęło się na samej górze i rozprzestrzeniało się wzdłuż pierwotnej powierzchni karbu, w wyniku czego wystąpiło pęknięcie w trybie II. Nie zaobserwowano zależności pomiędzy szczytowym obciążeniem i oryginalną długością karbu. Średnia wartość KIIC była około 3,8 razy większa niż wartość KIC. Pęknięcia w górnej części były znacznie większe niż w innym miejscu, co oznacza, że koncentracja naprężeń pęknięcia w górnej części była oczywista, co z kolei może prowadzić do pęknięcia. Kąt maksymalnego głównego naprężenia wyniósł około 30°, co było zgodne z pęknięciem w trybie I w warunkach czystego obciążenia ścinającego. Badanie półsymetrycznego obciążenia próbek z pojedynczym karbem okazało się być jedną z najskuteczniejszych metod uzyskiwania prawdziwego pęknięcia w trybie II i określenia odporności na kruche pękanie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.