Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rock magnetism
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Rock magnetism and anisotropy of magnetic susceptibility (AMS) results are reported for the first time from the southernmost (Nagercoil) charnockites of the Southern Granulite Terrane (SGT), south India. Forty-eight oriented block samples from nine sites have been collected and analysed. The integrated results of isothermal remanent magnetization (IRM), hysteresis loops, day plot, and thermomagnetic curves indicate the presence of magnetite with pseudo-single domain (PSD) and multidomain (MD) magnetite particles dominating the studied samples. Rock magnetic investigations reveal that the ratio of remanence (Mrs/Ms) range from 0.04 to 0.53 and the coercivity ratio (Hcr/Hc) between 1.19 and 5.17. The magnetization saturation was at 250–300 mT, and the coercive force ranged from 24 to 41 mT in all the samples. The results of the thermomagnetic study reveal the Curie temperatures between 560 °C and 580 °C, indicating the presence of magnetite. The observed principal AMS axes show mainly two types of magnetic fabrics. The first one shows the maximum susceptibility axes (K1) horizontal to sub-horizontal, and the minimum susceptibility axes (K3) plot near the pole. The second fabric describes that the minimum susceptibility axes (K3) show intermediate to vertical and the maximum susceptibility axes (K1) plot near the horizontal to sub-horizontal. AMS studies reveal that Nagercoil charnockites formed during the late-stage metamorphic event, magma flow (magnetic grains aligned) was sub-horizontal to horizontal, and the magnetic fabric grains are from prolate to oblate in shape.
EN
Herein are presented the results of detailed bio - (calcareous dinocysts, calpionellids, foraminifers, saccocomids) and chemostratigraphic (δ13C) studies combined with high-resolution microfacies, rock magnetic and gamma-ray spectrometry (GRS) investigations performed on the upper Kimmeridgian-upper Valanginian carbonates of the Giewont succession (Tatricum, Giewont and Mały Giewont sections, Western Tatra Mountains, Poland). The interval studied covers the contact between the Raptawicka Turnia Limestone (RTL) Fm. and the Wysoka Turnia Limestone (WTL) Fm. Their sedimentary sequence is composed of micrites, pseudonodular limestones, cyanoid packstones, lithoclastic packstone and encrinites. A precise correlation with the previously published Mały Giewont section is ensured by biostratigraphy, rock magnetic and GRS logs. The methodology adopted has enabled the recognition of two stratigraphic discontinuities, approximated here as corresponding to the latest Tithonian-early (late?) Berriasian and the early Valanginian. The hiatuses are evidenced by biostratigraphic data and the microfacies succession as well as by perturbations in isotopic compositions and rock magnetic logs; they are thought to result from a conjunction of tectonic activity and eustatic changes. A modified lithostratigraphic scheme for the Giewont and the Osobita High-Tatric successions is proposed. The top of the RTL Fm. falls in the upper Tithonian, where cyanoid packstones disappear. At the base of the WTL Fm. a new Giewont Member is defined as consisting of a basal lithoclastic packstone and following encrinites.
EN
Magnetostratigraphy of the Keuper succession in the southern Mesozoic margin of the Holy Cross Mountains is presented based on investigations of two sections of Brzeziny and Wolica. They cut an ~60 m thick succession of variegated siltstones and claystones, which overlies the Reed Sandstone (Stuttgart Formation). The succession has been correlated with the Patoka Member of the Grabowa Formation, defined in the Upper Silesia region as an equivalent of the Steinmergelkeuper (Arnstadt Formation). The primary Late Triassic magnetization was obtained from component B carried by fine-grained haematite. Twelve magnetic polarity zones, six of normal and six of reversed polarity, have been defined. The obtained polarity pattern corresponds to the Norian (E13–E16 Newark zones) according to the Long-Rhaetian option of the Late Triassic Magnetic Polarity Time Scale. The mean normal polarity characteristic direction (N = 24, D/I = 31/62, k = 28.24, α95 = 6.04) differs significantly from the reversed one (N = 18, D/I = 223/-25, k = 16.38, α95 = 8.65): the primary magnetic signal is partly overlapped by component A carried by magnetite of recent viscuous remanent magnetization. Some samples do contain also coarse-grained haematite that, however, does not form any clustered magnetization. The palaeopole position calculated from the transposed reversed and normal polarity directions of component B corresponds to the Late Triassic (Norian) segment of the reference Baltica/Europe Apparent Polar Wander Path.
EN
The hill range of Vaivara Sinimäed in northeast Estonia consists of several narrow east- to northeast-trending glaciotectonic fold structures. The folds include tilted (dips 4-75°) Middle Ordovician (early Darriwilian) layered carbonate strata that were studied by mineralogical, palaeomagnetic, and rock magnetic methods in order to specify the postsedimentational history of the area and to obtain a better control over the palaeogeographic position of Baltica during the Ordovician. Mineralogical studies revealed that (titano)magnetite, hematite, and goethite are carriers of magnetization. Based on data from 5 sites that positively passed a DC tilt test, a south-easterly downward directed component A (Dref = 154.6°± 15.3°, Iref = 60.9°± 9.7°) was identified. The component is carried by (titano)magnetite, dates to the Middle Ordovician (Plat = 17.9°, Plon = 47.3°, K = 46.7, A95 = 11.3°), and places Baltica at mid-southerly latitudes. Observations suggest that in sites that do not pass the tilt test, the glaciotectonic event has caused some rotation of blocks around their vertical axis.
EN
The results of magnetostratigraphic investigations in the Upper Berriasian Zavodskaya Balka section (Feodosiya, Crimea) are presented: magnetic polarity information, data on magnetic susceptibility, its anisotropy (АМS), frequency dependence (FD-factor) and other petromagnetic parameters. The analysis of the thermomagnetic and magnetic saturation curves has proved the presence of magnetite, being the main carrier of the remanent magnetization. Magnetic cleaning with alternating field and with temperature mostly has revealed the two-component composition of the magnetization, and the magnetostratigraphy is based on the directions of the most stable of them, with unblocking field from 35–50 mT and temperature from 300 to 540°C. The palaeomagnetic column presented specifies four heteropolar magnetozones – analogous to the M16 and M15 magnetic chrons (full M16n and M15r, parts of M16r and M15n). The existence of the M16n.1r subchron (“Feodosiya”) is substantiated, and it should be included into the Geomagnetic Polarity Time Scale. By bio- and magnetostratigraphic correlation, the section studied is an age analogue of the Paramimounum, Picteti and Alpillensis (probably Otopeta) subzones of the Boissieri Zone. The calculated sedimentation rate varied from 26.6 to 29.5 m/My.
EN
The results of palaeomagnetic, rock magnetic, and microscopic study of Early Paleozoic metabasites and granulites from the Orlica Śnieżnik Dome (OSD, Sudetes) have been combined with geochronological data. In the eastern part of the OSD (Śnieżnik Massif, SM) ferrimagnetic pyrrhotite is prevalent, accompanied by various amounts of Fe-oxides. In the western part of the OSD (Orlica-Bystrzyca Massif, OBM) Fe-oxides dominate. All magnetic minerals originated during hydrothermal and weathering processes. The palaeomagnetic study revealed the presence of three secondary components of natural remanence: Late Carboniferous, Late Permian, and Mesozoic. Two Paleozoic components are related to volcanic activity in the Sudetes. They are carried by pyrrhotite and Fe-oxides and were isolated only in SM rocks. The Mesozoic component was determined in both parts of the OSD and is carried by Fe-oxides. It covers a time span, from ~160 to ~40 Ma, corresponding to a long period of alteration.
7
Content available remote Stability of iron oxides and their role in the formation of rock magnetism
EN
Thermodynamic conditions (first of all, temperature) are the main dynamic factors in the transformation process of ferrous to ferric iron (TFFI). TFFI usually takes place within a temperature range of 473-843 K (most active at temperatures above 673 K) and does not require presence of the oxidizing agents above 673 K. Analysis of the chemical composition of different rocks and minerals indicates that only for some sedimentary rocks is the relative content of ferrous iron oxide less than its value in magnetite, and this value is minimal for oceanic sediments. The relative content of ferrous iron oxide in oceanic magmatic rocks exceeds this value in continental magmatic rocks and depends on the rate of rock cooling. An investigation of the role of the titanium oxide content of different rocks on stability of ferrous iron oxide against its transformation to ferric iron oxide shows that a significant correlation (r = 0.79) does exist between the relative content of ferrous iron oxide and ratio of TiO2/Fe2O3. Temperature within the solar nebula at location of the Earth was within the temperature range of the TFFI. During the Earth accretion and its early evolution, ferric iron oxide was unstable and most likely did not exist. The first magnetic minerals containing ferric iron could have appeared only after the Earth’s surface had cooled below ~843 K. The formation of the first Algoma-type banded iron formations could be used as a marker of the Earth’s surface cooling below ~843 K.
EN
The paper presents new palaeomagnetic and rock magnetic data from the Mesozoic carbonates of the Fatric (Kriżna) and Hronic (Choć) units from the Polish part of the Tatra Mts. 55 independently oriented hand samples were col-lected in the Western Tatra Mts. from the Kriżna nappe (8 localities; Middle Triassic-Lower Cretaceous) and Choć nappe (1 lo-cality; Middle Triassic). The results are interpreted together with data already published from the High Tatric units and com-pared to the palaeomagnetic database of Mesozoic and Tertiary results from the Eastern Alpine-Carpathian-Pannonian area. The rock magnetic investigations include IRM experiments, hysteresis measurements, thermomagnetic analysis and Iow temperaturę susceptibility measurements. Ali palaeomagnetically investigated sedimentary rocks in the Tatra Mts. were remagnetized. The age of remagnetization was interpreted as 113-88 Ma during Cretaceous Quiet Zone of normal polarity, synchronously with the Late Cretaceous thrusting in the Central West Carpathians (CWC). Fold test in some Kriżna (Bobrowiec and Suchy Wierch) units revealed that the remagnetization took place before the internal deformations of these units took place. Remagnetization is related mostly to pseudo-single domain (PSD) magnetite. In one locality ("Biancone" limestones of Tithonian/Berriasian age) the mixed polarity component was noted. The component passed the reversal test and was preliminarily interpreted as primary. However, different hysteresis parameters and maximum unblocking temperatures in the normally and reversely magnetized samples indicate complex rock magnetic properties and further investigations should be performed to prove its primary naturę. Identification of syntectonic Late Cretaceous remagnetization let to determine the dip of strata in investigated tectonic units during thrusting. The most numerous and reliable data were obtained in this and earlier studies from the High Tatric parautochthon and Bobrowiec, Hawrań and Suchy Wierch units belonging to the Kriżna nappe. Parautochthon was remagnetized in roughly horizontal position (š5°) while the mentioned Kriżna units were dipping at least 10-20° to the S to S W during magnetization. This implies that horizontal compression might be an important factor of their emplacement. However in the two localities from some other Kriżna units palaeomagnetic directions indicate that rocks were magnetized dipping 20-60° to the north thus the attitude of strata during overthrusting was complex. Palaeolatitude of the Tatra Mts. in the Late Cretaceous amounts to 30-36° N. Possibly primary component isolated in the Tithonian/Berriasian limestones indicate palaeolatitude 21-23° N which is closer to the African/Adriatic than European plate. Palaeodeclinations of Mesozoic compo-nents reveal 20-50° clockwise rotation of parautochthonous unit and Kriżna nappe in relation to the European platform. These are most likely resultant values of ca. 60° counter-clockwise rotation after Oligocene and 80-110° clockwise rotation between Cenomanian-Turonian and Eocene. After subtracting the effect of Tertiary rotation, the Mesozoic palaeopoles from the Tatra Mts. are matched with pre-Gosau palaeopoles from the Northern Calcareous Alps (NCA). These two rotational events are most probably characteristic also for the CWC in Slovakia, howeyer their magnitude is variable due to local tectonic effects. Existing palaeomagnetic data point to palaeotectonic affinity of the CWC and NCA in the Mesozoic. On the other hand, the CWC reveal different rotation pattern than the areas belonging to the Adriatic plate (Southern Alps, Inner West Carpathians (IWC) and Northern Pannonia). It seems that different azimuth of the Cretaceous palaeodeclinations between the CWC (predominantly clockwise rotations) and IWC, and Outer West Carpathians (exclusively counter-clockwise rotations) point to Cretaceous rotational movements along the Pieniny Klippen Belt and Meliata suture zones.
PL
W pracy przedstawiono nowe i częściowo opublikowane dane paleo- i petromagnetyczne z mezozoicznych skał węglanowych płaszczowin reglowych dolnej (kriżniańska - Fatricum) i górnej (choczańska - Hronicum) w polskiej części Tatr. Próbki do badań paleomagnetycznych pobrano z 8 stanowisk (środkowy trias-dolna kreda) w płaszczowinie reglowej dolnej i 1 stanowiska (środkowy trias) w płaszczowinie reglowej górnej. Ogółem pobrano 55 niezależnie zorientowanych próbek ręcznych. Wyniki badań zinterpretowano razem z opublikowanymi już danymi z tatrzańskich serii wierchowych i odniesiono do paleomagnetycznej bazy danych z obszaru wschodnich Alp, Karpat i rejonu pannońskiego. Przeprowadzone eksperymenty petromagnetyczne obejmowały badania izotermicznej pozostałości magnetycznej (IRM), parametrów pętli histerezy, analizy termomagnetyczne i pomiary podatności magnetycznej w niskich temperaturach. Wszystkie badane skały uległy przemagnesowaniu. Wiek przemagnesowania zinterpretowano na przedział 113-88 mln lat temu, najprawdopodobniej podczas ruchów płaszczowinowych na obszarze Centralnych Karpat Zachodnich, w czasie trwania długiej zony o normalnej polarności ("Cretaceous Quiet Zone"). W jednym stanowisku (wapienie "biancone" wieku tyton-berias) stwierdzono obecność składowych namagnesowania o mieszanej polarności, które dają pozytywny wynik testu inwersji i zostały wstępnie zinterpretowane jako składowe pierwotne. Jednak zróżnicowane właściwości petromagnetyczne normalnie i odwrotnie namagnesowanych próbek (maksymalne temperatury odblokowujące i parametry pętli histerezy) sprawiają, że kwestia pierwotności namagnesowania pozostaje otwarta. Wyróżnienie syntektonicznego przemagnesowania późnokredowego pozwoliło na określenie położenia warstw w poszczególnych jednostkach tektonicznych podczas ruchów płaszczowinowych. Najliczniejsze i najbardziej wiarygodne dane uzyskano z jednostki wierchowej parautochtonicznej oraz z jednostek kriżniańskich Bobrowca, Suchego Wierchu i Hawrania. Parautochton uległ przemagnesowaniu w pozycji subhoryzontalnej (ą5°), podczas gdy wymienione jednostki reglowe uzyskały namagnesowanie zapadając 10-20° w kierunku S do SW. Wniosek ten może mieć znaczenie przy określaniu mechanizmu transportu płaszczowin reglowych: w tym wypadku wydaje się, że główną rolę odgrywała pozioma kompresja. Jednak w dwóch stanowiskach z innych jednostek kriźniańskich wtórne kierunki przemagnesowania wskazują, że skały zostały przemagnesowane zapadając 20-60° na N. Paleoszerokość Tatr w późnej kredzie wynosiła 30-36°, natomiast na przełomie jury i kredy 21-23°. Paleodeklinacje kierunków mezozoicznych z Tatr wykazują 20-50° prawoskrętnej rotacji w stosunku do platformy europejskiej. Jest to najprawdopodobniej wypadkowa wartość dwóch rotacji o różnym wieku: lewoskrętnej o kąt 60° po oligocenie i prawoskrętnej o kąt 80-110° między cenomanem/turonem a eocenem. Po odjęciu efektów rotacji trzeciorzędowych paleobieguny z Tatr stają się bliskie przedsenońskim paleobiegunom z północnych Alp Wapiennych. Wymienione dwie rotacje najprawdopodobniej objęły również cały blok Centralnych Karpat Zachodnich na Słowacji, jednak ich amplituda mogła być zróżnicowana wskutek efektów lokalnych. Dane paleomagnetyczne wskazują na bliskość Centralnych Karpat Zachodnich i północnych Alp Wapiennych w mezozoiku, natomiast wykazują różnice w stosunku do obszarów zaliczanych do płyty adriatyckiej (Alpy Południowe, Wewnętrzne Karpaty Zachodnie, Północna Pannonia). Zróżnicowane zwroty pokredowych rotacji tektonicznych w Centralnych Karpatach Zachodnich i obszarach położonych bezpośrednio na N i S od nich (tzn. w Wewnętrznych Karpatach Zachodnich i Karpatach Zewnętrznych) wskazują na możliwość rotacji tektonicznych wzdłuż linii pienińskiego pasa skałkowego i szwu oceanu Meliata.
EN
The purpose of this study - to elaborate the local magnetostratigraphic sequence in the complete Jamnica S-119 core of Miocene marine sediments representing the time span from the Upper Badenian to Late Sarmatian/beginning of Pannonian(?), has been solved positively. The obtained results fulfill 6 of 10 criteria deciding about the proper quality of magnetostratigraphic data. The ferrosulphides - greigite and smythite - being the carriers of chemical magnetic remanence of secondary origin, had been identified for the first time in the examined Miocene sediments in Poland. Although the remanent magnetization has the secondary character - it has been acquired in short time after deposition of studied sequence of sediments - the obtained polarity sequence of the Earth magnetic field correlates properly with the fragment of the Global Polarity Time Scale between polarity chrones C3Br.3r and C5n.2n (~7.4-10.7 Ma). In spite of conducting the additional biostratigraphic studies of the investigated profile in the frame of this project there still exists unsolved question of the more precise location of the stratigraphic boundaries between the substages of the Middle Miocene against the time scale.
PL
Celem stworzenia lokalnej skali magnetostratygraficznej dla utworów środkowego miocenu (górny baden-dolny sarmat) zapadliska przedkarpackiego zbadano osady morskie pozyskane z otworu wiertniczego Jamnica S-119 k. Stalowej Woli. Próbki do pomiarów paleomagnetycznych pobrano z kolejnych, jednometrowych odcinków rdzenia, o określonej orientacji strop-spąg. Kolekcja, wycięta z 230 m bieżących rdzenia, liczy ok. 2500 próbek (bez uwzględnienia 30 m osadów zawierających głównie utwory czwartorzędowe). Otwór wiertniczy Jamnica S-119 został wytypowany do badań magnetostratygraficznych po szczegółowej analizie lokalnej sytuacji tektonicznej (Z. Krysiak,1994) w obszarze mało zaburzonym przez ruchy neotektoniczne. Bezpośrednia obserwacja ułożenia warstw osadów wzdłuż badanego profilu oraz analiza wyników pomiarów anizotropii podatności magnetycznej całej kolekcji potwierdziła poziome lub prawie poziome ułożenie warstw skalnych w badanej sekwencji osadów. Dzięki temu dla pomierzonych wartości inklinacji magnetycznej wektora naturalnej pozostałości magnetycznej wzdłuż całego rdzenia nie było potrzeby wprowadzania poprawek na upad warstw. Średnie wartości inklinacji magnetycznej (po rozmagnesowaniu) obliczone dla poszczególnych części badanego profilu były, zatem podstawą wnioskowania o zmianach polarności ziemskiego pola magnetycznego z okresu depozycji i kompakcji badanej sekwencji osadów. Badania składu frakcji minerałów magnetycznych występujących w badanych skalach stanowiły niezbędny warunek zrozumienia roli postsedymentacyjnych procesów chemicznych (redukcja tlenków żelaza do siarczków) w procesie nabywania chemicznej pozostałości magnetycznej, stanowiącej główną składową trwałego namagnesowania osadów. W badaniach składu minerałów ferromagnetycznych wykorzystano klasyczne metody termiczne (określania ich temperatur blokujących) oraz analizę rentgenowską i obserwacje pod mikroskopem elektronowym z mikrosondą wyseparowanej frakcji ferromagnetyków. Ponadto wykonano szczegółowe pomiary parametrów pętli histerezy dla próbek skał pobranych w równych odstępach wzdłuż rdzenia, co pozwoliło wyznaczyć poziomy litologiczne bogatszego występowania ferromagnetycznych siarczków żelaza: grejgitu i smytytu o jednodomenowych ziarnach, będących głównymi nośnikami chemicznej pozostałości magnetycznej. Pierwotne minerały magnetyczne -detrytyczne tlenki (magnetyt i maghemit) lub wodorotlenki żelaza - występują w badanych skalach w ilościach śladowych, zaś w warstwach o najniższych wartościach podatności magnetycznej i natężenia namagnesowania (np. w wapieniach) dominują paramagnetyki. Przeprowadzono analizę numeryczną krzywych rozmagnesowania naturalnej pozostałości magnetycznej wszystkich próbek. Rozmagnesowanie wykonano bądź zmiennym polem magnetycznym, bądź tez metodą termiczną. Stwierdzono, że do konstrukcji lokalnej skali magnetostratygraficznej należy wykorzystać składową pozostałości magnetycznej wyseparowaną z całkowitego wektora naturalnej pozostałości magnetycznej polem zmiennym nie wyższym niż 50-60 mT (z uwagi na wystąpienie silnego efektu gyromagnetycznego w wyższych polach rozmagnesowujących) albo składową wyseparowaną w trakcie grzania próbek do temperatur nie wyższych niż 350-370°C (tzn. do temperatur gwałtownego utleniania się siarczków żelaza). Jest to postsedymentacyjna składowa NRM pochodzenia chemicznego. Uśrednione wartości inklinacji magnetycznej tej składowej NRM posłużyły do zestawienia przebiegu zmian polarności magnetycznej wzdłuż profilu. Wartości deklinacji magnetycznej nie mogły być wykorzystane z powoda braku orientacji rdzenia w płaszczyźnie poziomej. Skalę magnetostratygraficzną opracowano przy zachowaniu 7 spośród 10 kryteriów dotyczących jakości i wiarygodności studium magnetostratygraficznego, zalecanych w nowoczesnych badaniach paleomagnetycznych (N. E. Opdyke, J. E. T. Channel, 1996). Otrzymany przebieg zmian polarności magnetycznej w profilu Jamnica S-119 został skorelowany z fragmentem globalnej skali zmian polarności ziemskiego pola magnetycznego w czasie, zestawionej przez C. Cande i D V. Kenta (1995), na odcinku od 11 do ok. 7.5 Ma. Porównanie lokalnej skali magnetostratygraficznej ze skalą globalną zostało zestawione z wynikami szczegółowych badań biostratygraficznych E. Gaździckiej (1994), J. Szczecharowej (1995), B. Studenckiej, J. Paruch-Kulczyckiej (1999) i A. Sadowskiej (1999) oraz pośrednia oceną prawdopodobnego wieku cienkich wkładek tufitów w spągowej części rdzenia (ok. 11 mln lat). Posłużono się także ocena średniej prędkości sedymentacji badanych utworów (0.07 mm/a) na podstawie rozpatrzenia modelu ich subsydencji i kompakcji, z uwzględnieniem stopnia porowatości badanych skał (N. Oszczypko, inf. ustna). Wnioski wypływające z porównania pozycji w czasie skali magnetostratygraficznej dla profilu Jamnica S-119 w zestawieniu ze schematami biostratygraficznymi skłaniają do rozważenia trzech możliwych sposobów wytłumaczenia obecności górnobadeńskich skamieniałości w spągowej części profilu Jamnica: 1. Fauna górnobadeńska obecna w spągowej części profilu została tam redeponowana w warstwach młodszych o co najmniej ok. 2 mln lat od warstw, w których pierwotnie była osadzana. 2. Badany profil może mieć lukę stratygraficzną odpowiadającą części dolnego sarmatu, która nie jest zauważalna w zapisie sedymentologicznym i magnetostratygraficznym. 3. Początek dolnego badenu powinien być odmłodzony o ok. 2 mln lat na skali wieku bezwzględnego. Jedynie przebadanie kompleksowe porównawczych profili stratygraficznych, wraz z wyznaczeniem wieku radiometrycznego i wykonaniem magnetostratygrafii, może w przyszłości rozstrzygnąć, która z tych opcji jest najbardziej uzasadniona.
EN
Variscan granitoids of the High Tatra Mts. in Poland were the subject of palaeomagnetic, petrographical and rock magnetic investigations. The sampled rocks were granodiorites, rarely tonalites showing weak hydrothermal alterations (chloritisation, epidotisation). 31 hand samples from 7 localities were palaeomagnetically investigated. Stable palaeomagnetic directions of Late Palaeozoic age were isolated in four localities (mean direction: D = 193°, I = 17°, a95 = 12, k = 59, palaeopole: 4°E, 31°S). The stable magnetisation resides in hematite. This mineral occurs in hematite-ilmenite intergrowths that exsolved in high temperatures (670-720°C) and as secondary hematite of hydrothermal origin. Because of heterogeneity of magnetic carriers it is possible that the characteristic magnetisation is shifted in time between localities. Question of tectonic tilt of the High Tatra granite is discussed. The age of characteristic magnetisation based on palaeoinclination estimations apparently fits the isotopic cooling age of the intrusion (330-300 Ma) if tectonic correction is not applied. The palaeopole is situated between the European and African Apparent Polar Wander Paths (APWP) and could be matched with both reference curves. After tectonic correction the palaeopole could be matched only with the African APWP at the point ca. 360 Ma. In this case the magnetisation related to the high temperature hematite would preceed the cooling ages recorded by Ar-Ar method.
PL
Przeprowadzono badania paleomagnetyczne waryscyjskich granitoidów polskiej części Tatr Wysokich. Pobrano 31 próbek ręcznych z nastepujących 7 stanowisk: próg między kotliną Morskiego Oka i kotliną Czarnego Stawu (stanowiska M0l i M02), ściana Świstówki Roztockiej w Dolinie Roztoki (RZ), Wodogrzmoty Mickiewicza (WM), Dolinka za Mnichem (M), rejon Kościelca(K) i próg powyżej Czarnego Stawu w Dolinie Gąsienicowej (HG). Badane skały maja skład granodiorytów i tonalitów, ze śladami przeobrażeń hydrotermalnych (epidotyzacja, chlorytyzacja). We wszystkich stanowiskach stwierdzono obecność lineacji magnetycznej o przebiegu W-E. Granitoidy tatrzańskie wykazują duże zróżnicowanie własności magnetycznych. Stabilne kierunki paleomagnetyczne wieku późnopaleozoicznego wyróżniono w stanowiskach M0I, M02, RZ i WM (kierunek średni: D = 193°, l= 17°, (alfa 95) = 12, k = 59, paleobiegun: 4°E, 31°S). Kierunki te są oparte na hematycie, który występuje jako przerosty w dwufazowych ziarnach hematytowo-ilmenitowych, odmierzanych w wysokich temperaturach (670720°C) oraz jako minerał hydrotermalny. Średnie kierunki z poszczególnych stanowisk różnią się nieco i nie można wykluczyć, że namagnesowanie nie jest jednoczasowe. Wydaje się, że istnieje pewna korelacja między wiekiem namagnesowania a składem mineralnym granitoidu (kierunki starsze występują w granitoidach o składzie tonalitu), problem ten wymaga jednak dalszych badań. Interpretacja wieku namagnesowania zależy od zastosowania korekcji tektonicznej. Wiek charakterystycznego kierunku namagnesowania, określony na podstawie parametru paleoinklinacji, wykazuje lepszą zgodność z wiekiem izotopowym stygnięcia intruzji tatrzańskiej (330-300 mln lat) bez stosowania korekcji tektonicznej. Paleobiegun leży między środkowo/późnokarbońskimi odcinkami krzywych referencyjnych dla płyty europejskiej i afrykańskiej i, po uwzględnieniu niewielkich rotacji wokół osi pionowej, może być dopasowany do obu krzywych na odcinku 340-320 mln lat. Po zastosowaniu korekcji tektonicznej (określonej na podstawie zapadania warstw dolnego triasu autochtonicznej pokrywy trzonu krystalicznego na jego północnej krawędzi) paleobiegun można dopasować jedynie do krzywej afrykańskiej w punkcie 360 mln lat. Interpretacji takiej nie można jednoznacznie odrzucić, gdyż namagnesowanie związane z przerostami hematytowo-ilmenitowymi mogło utrwalić się znacząco wcześniej niż zamknięcie systemu 4°Ar-39Ar, wykazujące wiek stygnięcia intruzji (300-350°C). Jednoznaczna interpretacja wyników badań paleomagnetycznych granitoidu tatrzańskiego nie jest możliwa bez określenia wieku radiometrycznego badanych próbek.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.