Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  robust Kalman filtering
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
As a result of the development of modern vehicles, even higher accuracy standards are demanded. As known, Inertial Navigation Systems have an intrinsic increasing error which is the main reason of using integrating navigation systems, where some other sources of measurements are utilized, such as barometric altimeter due to its high accuracy in short times of interval. Using a Robust Kalman Filter (RKF), error measurements are absorbed when a Fault Tolerant Altimeter is implemented. During simulations, in order to test the Nonlinear RKF algorithm, two kind of measurement malfunction scenarios have been taken into consideration; continuous bias and measurement noise increment. Under the light of the results, some recommendations are proposed when integrated altimeters are used.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.