Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rigidity and damping factor
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The research of the dynamic properties of rotating units in turbochargers
EN
The dynamic model of a rotating unit of a turbocharger has been designed. Both masses of the rotors and shaft have been modelled as concentrated masses. The rotating unit has been propped on two supports forming lateral sliding bearings with a floating ring bearing. Each bearing is designed including the floating ring bearing mass. The shaft of a rotating unit spins at angular velocity omega1; whereas, a floating ring bearing spins at angular speed omega2. The angular velocity omega2 has been determined from the equilibrium of friction moments on both the outer and inner surfaces of a floating ring bearing. A mathematical model constitutes a system of differential equations, mutually coupled. The mathematical model has been solved by determining acceleration, velocity and displacement in each node. This work deals with the influence of the imbalance of rotating elements, bearings clearances, rotational speed of a shaft on rigidity and damping factors of bearing supports as well as the amplitude of displacements in nodes of rotating units. Having analysed the results of the research, we noticed the crucial influence of imbalance and a quotient of radial clearances on displacement amplitude in bearing nodes. Also, it has been stated that the growth of quotient of radial clearances causes the growth of displacement amplitude.
PL
Opracowano model dynamiczny zespołu wirującego turbosprężarki. Masę wirników i wału zamodelowano jako masy skupione. Zespół wirujący został podparty na dwóch podporach stanowiących poprzeczne łożyska ślizgowe z panewką pływającą. Każde łożysko zamodelowano uwzględniając masę panewki pływającej. Wał zespołu wirującego obraca się z prędkością kątową omega1, natomiast panewka pływająca z prędkością kątową omega2. Prędkość kątowa omega2 wyznaczona została z równowagi momentów tarcia na powierzchni zewnętrznej i wewnętrznej panewki pływającej. Model matematyczny stanowi układ równań różniczkowych, wzajemnie sprzężonych. Model matematyczny rozwiązano wyznaczając w każdym węźle: przyspieszenie, prędkości i przemieszczenia. W pracy przedstawiono wpływ: niewyważenia elementów wirujących, luzów łożyskowych, prędkości obrotowej wału na współczynniki sztywności i tłumienia podpór łożyskowych oraz amplitudę przemieszczeń węzłów zespołu wirującego. Analizując wyniki badań stwierdzono wpływ niewyważenia i ilorazu luzów promieniowych na amplitudę przemieszczeń w węzłach łożyskowych. Ze wzrostem ilorazu luzów promieniowych i niewyważenia rosną amplitudy przemieszczeń.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.