W artykule przedstawiono nowe metody optymalizacji dla łącza i sieci bezprzewodowej OFDM/OFDMA (ang. Orthogonal Frequency-Division Multiplexing/Orthogonal Frequency-Division Multiple access). W przeciwieństwie do tradycyjnego podejścia np. maksymalizacji przepływności czy tez minimalizacji mocy transmisji, artykuł koncentruje się na optymalizacji metryki efektywności energetycznej. Ponadto, w badaniach zastosowano zaawansowane modele zużycia energii, uwzględniające moc zużywaną przez przetwarzanie sygnału w paśmie podstawowym. Ten składnik może mieć kluczowe znaczenie w przypadku komunikacji na niewielkie odległości, dla której moc zużywana na przetwarzanie sygnału może dominować nad mocą potrzebną do emisji sygnału. Wyniki badań pokazują, że zaproponowane metody zwiększają efektywność energetyczną we wszystkich rozważanych scenariuszach.
EN
In this paper, new optimization methods for OFDM/OFDMA link and wireless network are presented. In contrast to the approaches known from the literature, such as maximizing the throughput or minimizing the transmission power, this article focuses on optimizing the energy efficiency metric. Moreover, the advanced power consumption models that consider the power consumed by baseband signal processing are used. This component can be critical in short-distance communications, where the energy used for signal processing may dominate over the power needed to transmit the signal. The research results show that the proposed methods increase energy efficiency in all scenarios.
Artykuł prezentuje wyniki wstępnej analizy dynamicznej alokacji zasobów dla rozproszonych jednostek przetwarzających (DU) wraz z alokacją wrażliwych na opóźnienia przepływów ruchu (fronthaul/midhaul) w konwergentnych sieciach xHaul z komutacją pakietów. Badane są trzy strategie alokacji, które różnią się kryterium wg którego dokonywany jest wybór węzła przetwarzającego (PP). Eksperymenty symulacyjne przeprowadzono dla sieci typu mesh z uwzględnieniem różnych limitów opóźnień przepływów oraz pojemności węzłów PP.
EN
The paper presents preliminary results of analysis of dynamic resource allocation for processing of distributed units (DU) with allocation of latency-aware traffic flows (fronthaul/midhaul) in convergent packet switched xHaul networks. Three strategies are studied, which apply differ criteria for the selection of processing pool (PP) nodes. Simulation experiments have been conducted in a mesh network assuming different flows latency limits and PP node capacities.
The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks.
Artykuł przedstawia analizę wydajności autorskiego mechanizmu zestawienia dodatkowych ścieżek (zwanych bypass) w sieciach wielowarstwowych złożonych z warstwy wirtualnej (IP) oraz z warstwy elastycznej sieci optycznej (EON). Zaproponowano współczynnik wykorzystania zasobów podczas ich dynamicznej alokacji dla mechanizmu bypass. Przeprowadzono eksperymenty symulacyjne dla dwóch topologii sieci oraz uwzględniono dwie klasy ruchu. Wyniki potwierdzają wysoką wydajność zaproponowanego mechanizmu z uwzględnieniem priorytetyzacji ruchu.
EN
The article presents an analysis of the efficiency of the proprietary mechanism of setting up additional paths (called bypass) in multilayer networks composed of a virtual layer (IP) and a layer of elastic optical network (EON). The resource utilization ratio was proposed during its dynamic allocation for the bypass mechanism. Simulation experiments were conducted for two network topologies and two classes of traffic were taken into account. The results confirm the high efficiency of the proposed mechanism, taking into account traffic prioritization.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In cloud computing, scheduling and resource allocation are the major factors that definethe overall quality of services. An efficient resource allocation module is required in cloudcomputing since resource allocation in a single cloud environment is a complex process.Whereas resource allocation in a multi-cloud environment further increases the complexityof allocation procedures. Earlier, resources from the multi-cloud environment were allocated based on task requirements. However, it is essential to analyze the present resourceavailability status and resource capability before allocating to the requested tasks. So, inthis research work, a hybrid optimized resource allocation model is presented using bat optimization algorithm and particle swarm optimization algorithm to allocate the resourceconsidering the resource status, distance, bandwidth, and task requirements. Proposedmodel performance is evaluated through simulation and compared with conventional optimization algorithms. For a set of 500 tasks, the proposed approach allocates resourcesin 47 s, with a minimum energy consumption of 200 kWh. Compared to conventionalapproaches, the performance of the proposed model is much better in terms of deadlinemissed tasks, resource requirement, energy consumption, and allocation time.
Small and medium-sized enterprises (SMEs) are facing barriers to grow due to the lack of structured procedures for upgrading and allocating the limited resources. To overcome these drawbacks and to improve business capabilities, a structured framework to conduct a comprehensive diagnostic and upgrading study is presented in this paper. The proposed framework involves four phases. First, the external and internal strategic factors, which can affect the enterprises’ performance are evaluated using strategic planning and assessment tools. Second, key upgrade performance indicators are developed and evaluated using multi-attribute rating techniques to guide, evaluate, and track progress of upgrading process. Third, a set of upgrade strategies are generated and evaluated using resource allocation model. Finally, a periodic re-evaluation plan is introduced to monitor the implementation progress. The developed framework for performance evaluation and upgrading is suitable to be used as a structured know-how procedure in manufacturing enterprises and can support entrepreneurs in their strategic decisions. To validate the proposed framework, a data set was collected from a local housecore company. As a result, one package of the efficient frontier strategies that represents the best use of resources was proposed for implementation.
Due to a continuous increase in the use of computer networks, it has become important to ensure the quality of data transmission over the network. The key issue in the quality assurance is the translation of parameters describing transmission quality to a certain rating scale. This article presents a technique that allows assessing transmission quality parameters. Thanks to the application of machine learning, it is easy to translate transmission quality parameters, i.e., delay, bandwidth, packet loss ratio and jitter, into a scale understandable by the end user. In this paper we propose six new ensembles of classifiers. Each classification algorithm is combined with preprocessing, cross-validation and genetic optimization. Most ensembles utilize several classification layers in which popular classifiers are used. For the purpose of the machine learning process, we have created a data set consisting of 100 samples described by four features, and the label which describes quality. Our previous research was conducted with respect to single classifiers. The results obtained now, in comparison with the previous ones, are satisfactory—high classification accuracy is reached, along with 94% sensitivity (overall accuracy) with 6/100 incorrect classifications. The suggested solution appears to be reliable and can be successfully applied in practice.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we consider the problem of allocating resources among Decision Making Units (DMUs). Regarding the concept of overall (cost) efficiency, we consider three different scenarios and formulate three Resource Allocation (RA) models correspondingly. In the first scenario, we assume that overall efficiency of each unit remains unchanged. The second scenario is related to the case where none of overall efficiency scores is deteriorated. We improve the overall efficiencies by a pre-determined percentage in the last scenario. We formulate Linear Programming problems to allocate resources in all scenarios. All three scenarios are illustrated through numerical and empirical examples.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Fog/Edge computing model allows harnessing of resources in the proximity of the Internet of Things (IoT) devices to support various types of latency-sensitive IoT applications. However, due to the mobility of users and a wide range of IoT applications with different resource requirements, it is a challenging issue to satisfy these applications' requirements. The execution of IoT applications exclusively on one fog/edge server may not be always feasible due to limited resources, while the execution of IoT applications on different servers requires further collaboration and management among servers. Moreover, considering user mobility, some modules of each IoT application may require migration to other servers for execution, leading to service interruption and extra execution costs. In this article, we propose a new weighted cost model for hierarchical fog computing environments, in terms of the response time of IoT applications and energy consumption of IoT devices, to minimize the cost of running IoT applications and potential migrations. Besides, a distributed clustering technique is proposed to enable the collaborative execution of tasks, emitted from application modules, among servers. Also, we propose an application placement technique to minimize the overall cost of executing IoT applications on multiple servers in a distributed manner. Furthermore, a distributed migration management technique is proposed for the potential migration of applications' modules to other remote servers as the users move along their path. Besides, failure recovery methods are embedded in the clustering, application placement, and migration management techniques to recover from unpredicted failures. The performance results demonstrate that our technique significantly improves its counterparts in terms of placement deployment time, average execution cost of tasks, the total number of migrations, the total number of interrupted tasks, and cumulative migration cost.
In this paper, the resource allocation problem in the downlink of the Fog radio network is considered. First, the different traffic rates of broadband links of IoT (Internet of Things) implemented in Fog radio network are presented. Furthermore, the optimal resurce allocation problem is formulated. Using the matching theory, distributed algorithms are developed to make decsion about the subchannel assignment for a given IoT device. The presented algorithm aims at a stable fit. It is characterized by low complexity. The obtained results were confirmed in simulation tests.
PL
W tym artykule rozważono problem alokacji zasobów w łączu w dół w mgłowej sieci radiowej. Najpierw przedstawiono różne rodzaje przepływów dla szerokopasmowych łączy Internetu Rzeczy (Internet of Things) implementowanych w mgłowej sieci radiowej. Ponadto sformułowano problem optymalnej alokacji zasobów. Korzystając z teorii dopasowania został opracowany algorytm w celu podejmowania decyzji o przypisaniu podkanału dla danego urządzenia IoT. Przedstawiony algorytm ma na celu stabilne dopasowanie. Algorytm charakteryzuje się małą złożonością. Uzyskane wyniki zostały potwierdzone w badaniach symulacyjnych.
Efficient resource management is a challenging task in distributed systems, such as the Internet of Things, fog, edge, and cloud computing. In this work, we present a broad overview of the Internet of Things ecosystem and of the challenges related to managing its resources. We also investigate the need for efficient resource management and the guidelines given/suggested by Standard Development Organizations. Additionally, this paper contains a comprehensive survey of the individual phases of resource management processes, focusing on resource modeling, resource discovery, resource estimation, and resource allocation approaches based on performance parameters or metrics, as well as on architecture types. This paper presents also the architecture of a generic resource management enabler. Furthermore, we present open issues concerning resource management, pointing out the directions of future research related to the Internet of Things.
The aim of the paper is to analyse contemporary trends in distributed manufacturing (DM) research and to present a concept to develop and test some task allocation, planning and scheduling algorithms for DM network organisations. Some concepts to identify key factor criteria and reasoning policies and rules for production/manufacturing decision support system are also undertaken. And finally, an aim is to draw a proposal for a development of a prototype decision support system with necessary communication and knowledge oriented modules to be implemented in an example of dynamic, DM and logistics network structure, particularly for very popular dynamic cluster forms in Poland. The developed concept of the organization of a multi-entity DM network will enable business-effective use of the system, supporting manufacturing decision making, consulting and offering information services in the control centre (the so-called Competence Centre) by constructing virtual reality and access to services in a distributed network of cloud computing type. Integration of the whole system into one information system will enable analysis and network resource optimization of manufacturing and logistics processes, new analytical functions, reduction of delays in the manufacturing system, management of changes and risks, and visualization of the current state of the DM system.
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Many modern computing platforms in the safety-critical domains are based on heterogeneous Multiprocessor System-on-Chip (MPSoC). Such computing platforms are expected to guarantee high-performance within a strict thermal envelope. This paper introduces a testbed for thermal and performance analysis. The testbed allows the users to develop advanced scheduling and resource allocation techniques aiming at finding an optimal trade-off between the peak temperature and the achieved performance. This paper presents a new, open-source Thermobench tool for data collection and analysis of user-defined workloads. Furthermore, a methodology for shortening the time needed for the data collection is proposed. Experiments show that a significant amount of time can be saved. Specifically, time reduction from 60 minutes to 15 minutes is achieved with the i.MX8 MPSoC from NXP while running a set of user-defined benchmarks that stress CPU, GPU, and different levels of the memory hierarchy.
14
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Job management system (JMS) is an important part of any supercomputer. JMS creates a schedule for launching jobs of different users. Actual job management systems are complex software systems with a number of settings. These settings have a significant impact on various JMS metrics, such as supercomputer resources utilization, mean waiting time of a job in queue, and others. Various JMS simulators are widely used to study the influence of JMS settings or modifications, new scheduling algorithms, jobs input stream parameters or available computing resources for JMS efficiency metrics. The article presents the comparative analysis results of the actual JMS simulators (Alea, ScSF, Batsim, AccaSim, Slurm simulator) and their application areas. The authors consider new ways to use the JMS simulator as a scientific service for researchers. With such a service, the researchers are able to study various hypotheses about JMS efficiency, algorithms or parameters. This gives the folowing: (1) research is performed on the service side around the clock, (2) the simulator accuracy or adequacy is provided by the service, (3) the research results reproducibility is ensured, and the simulator-as-a-service becomes a single entry point for the researchers.
15
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The main goal of project control is to identify project opportunities or problems during project execution, such that corrective actions can be taken to bring the project in danger back on track when necessary. In this study, we define different scenarios to allocate the limited budget used for the cost of activity execution, delays, and corrective actions, according to the timing and amount of the budget release. A large computational experiment is conducted on real-life project data to evaluate the performance of each scenario. The results show that both the timing and amount of the budget release have an effect on project performance.
16
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The use of spatially distributed technological objects in industry and production systems is an ever-increasing trend. The optimal coordination algorithm is used in the information technology for the control of preparation and packaging of dairy products based on SCADA/HMI. The optimizing task is solved by genetic algorithm. In the process of coordination is carried out resource allocation and synchronization of technological lines. The results obtained ensure reduction of losses from equipment downtime and increase the production efficiency.
PL
Optymalny algorytm koordynacji wykorzystywany jest w technologii informacyjnej do kontroli przygotowania i pakowania produktów mlecznych w oparciu o SCADA / HMI. W procesie koordynacji prowadzona jest alokacja zasobów i synchronizacja linii technologicznych. Uzyskane wyniki zapewniają redukcję strat spowodowanych przestojem sprzętu i zwiększają wydajność produkcji.
17
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The life-history trade-off between investment in somatic growth and gonadal tissue is caused by individual energy limitations and results in individuals that adopt specific tactics to achieve reproduction. Allocation in primary and secondary sexual traits in Atlantic salmon males was studied by assessing life history traits (smolt size, sea age, growth rate) based on back-calculation of scales, ejaculate energy content (sperm ATP content, mass and density) and the size of secondary sexual traits. We found that males investing less in secondary sexual traits produce ejaculates with a higher energy content. Differences were found in the investment into primary and secondary sexual traits between fish that spent one year in the sea before returning to their spawning grounds (grilse) and multi-sea-winter adults, suggesting that different energy allocation patterns in reproductive effort reflect alternative developmental pathways. These findings are consistent with the pattern where multi-sea-winter male ejaculate investment relies principally on the resource acquisition in the ocean, whereas grilse ejaculate investment relies chiefly on the resource allocation of available surplus energy, thus representing alternative male reproductive tactics.
W niniejszym artykule zaproponowano algorytm alokacji zasobów maksymalizujący efektywność energetyczną (ang. Energy Efficiency - EE) systemu komunikacji bezprzewodowej z przekaźnikiem inspirowanego wieloetapowymi połączeniami sieci połączeń nerwowych. Przekaźnik działa w trybie zdekoduj i przekaż (ang. Decode and Forward - DF), w którym dopuszcza się możliwość jednoczesnego wykorzystania tych samych podnośnych w łączu od przekaźnika do użytkownika końcowego i w łączu bezpośrednim. Wyniki symulacji pokazują efektywność proponowanego rozwiązania.
EN
In this paper, the resource allocation algorithm has been the proposed, that maximizes the energy efficiency (EE) of the wireless relay communication system, inspired by the multihop communication in neural system. Here, the decode-and-forward relay nodes transfers information to the end node using the same subcarriers as in the direct link. Simulation results show the effectiveness of proposed solution.
Wzrostowi zapotrzebowania na moc obliczeniową oraz natężenie ruchu w sieci IP nie towarzyszy obecnie pojawianie się technologii chroniących operatorów i środowisko naturalne przed analogicznym wzrostem zapotrzebowania na energię w sektorze. Artykuł 1 przedstawia wyniki badań, których celem jest opracowanie koncepcji i realizacja systemu komputerowego do energooszczędnego sterowania obciążeniem rozproszonego centrum przetwarzania danych oraz szybkością pracy jednostek obliczeniowych i urządzeń sieciowych przekazujących komunikaty z danymi. Niniejsza praca prezentuje propozycję dwupoziomowej struktury zarządzania przydziałem bloków zadań do klastrów, a następnie do poszczególnych serwerów obliczeniowych. Decyzje o alokacji zadań są podejmowane w wyniku rozwiązania zadania minimalizacji zużycia zasobów energetycznych systemu, przy założeniu zagwarantowania wymaganego poziomu jakości usług.
EN
The proposition of a framework for energy-aware control in a large scale HPC (High Performance Computing) system is presented and discussed. The implementation consists of a global computing resource manager that is implemented in the central control level, energy-efficient backbone network connecting computing clusters and data centers and a local resource manager implemented in each cluster. The decisions about activity and power status of computer and network equipment are determined by solving the problem of minimizing the energy used by the whole HPC system. A simulation-based optimization scheme is utilized to calculate optimal allocation of a set of tasks to clusters.
This paper proposes a fuzzy Manhattan distance-based similarity for gang formation of resources (FMDSGR) method with priority task scheduling in cloud computing. The proposed work decides which processor is to execute the current task in order to achieve efficient resource utilization and effective task scheduling. FMDSGR groups the resources into gangs which rely upon the similarity of resource characteristics in order to use the resources effectively. Then, the tasks are scheduled based on the priority in the gang of processors using gang-based priority scheduling (GPS). This reduces mainly the cost of deciding which processor is to execute the current task. Performance has been evaluated in terms of makespan, scheduling length ratio, speedup, efficiency and load balancing. CloudSim simulator is the toolkit used for simulation and for demonstrating experimental results in cloud computing environments.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.