Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  resorbable metallic alloys
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Mg-Zn-Ca-(Cu,Au) alloys were considered as resorbable materials for orthopedic short- term implants. The aim of this paper was to determine the influence of Au and Cu addition on corrosion properties of Mg69Zn25Ca5Au1, Mg69Zn25Ca5Au0.5Cu0.5 and Mg69Zn25Ca5Cu1 metallic glasses. The analysis of corrosion results allowed to describe the influence of 0.5 and 1 at.% of Au and Cu on the corrosion resistance in artificial physiological fluid. The Mg69Zn25Ca5Au0.5Cu0.5 and Mg69Zn25Ca5Cu1 metallic glasses exhibit lower corrosion resis-tance in comparison with Mg69Zn25Ca5Au1 alloy. The increase of Cu content caused the increase of hydrogen evolution volume and the high cathodic activity. The Mg69Zn25Ca5Au1 metallic glass shows the decrease of hydrogen evolution volume and manifests the low corrosion current density and the high polarization resistance, indicating the high corrosion resistance.
EN
This article presents investigations utility of Mg-based metallic glasses for resorbable orthopedic implants. Exploration of biocompatible Mg–Zn–Ca alloys in order to determine Zn and Ca optimum concentration were conducted, based on three criteria: sufficiently high GFA (glass forming ability), sufficiently high tensile strength, microhardness and the suitable dissolution rate (corrosion rate) in Ringer's solution. Fulfillment of these criteria should ensure bone union before implant dissolution. The optimatization of Ca and Zn concentration in the range of 4–6 at.% Ca and 28–32 at.% Zn was executed. The samples in form of ribbons (0.02–0.05 mm thickness) and rods (about diameter up to 4 mm) with amorphous structure were produced. These investigations allowed to determine the GFA. The optimal results for Mg66Zn30Ca4 and Mg64Zn32Ca4 alloys: tensile strength: 191–166 MPa, microhardness: 291–263 HV and volume of released hydrogen 0.04–0.12 ml/cm2/h. The corrosion studies - immersion and potentiodynamic methods were conducted (including measurement specific corrosion current density for Mg alloys). Finally, a comparative analysis was performed, which indicated the impact of Ca and Zn concentration on: GFA, mechanical properties and dissolution rate of studied metallic glasses.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.