Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  resolving set
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
For a simple connected graph G = (V,E) and an ordered subset W = {w1, w2, . . . , wk} of V , the code of a vertex v ∈ V , denoted by code(v), with respect to W is a k-tuple (d(v, w1), . . . , d(v, wk)), where d(v, wt) represents the distance between v and wt. The set W is called a resolving set of G if code(u) ≠ code(v) for every pair of distinct vertices u and v. A metric basis of G is a resolving set with the minimum cardinality. The metric dimension of G is the cardinality of a metric basis and is denoted by β(G). A set F ⊂ V is called fault-tolerant resolving set of G if F \ {v} is a resolving set of G for every v ∈ F. The fault-tolerant metric dimension of G is the cardinality of a minimal fault-tolerant resolving set. In this article, a complete characterization of metric bases for G2 mn has been given. In addition, we prove that the fault-tolerant metric dimension of G2 mn is 4 if m + n is even. We also show that the fault-tolerant metric dimension of G2 mn is at least 5 and at most 6 when m + n is odd.
2
Content available Metric dimension of Andrasfai graphs
EN
A set W ⊆ V(G) is called a resolving set, if for each pair of distinct vertices u,v ∈ V(G) there exists t ∈ W such that d(u,t) ≠ d(v,t), where d(x,y) is the distance between vertices x and y. The cardinality of a minimum resolving set for G is called the metric dimension of G and is denoted by dimM(G). This parameter has many applications in different areas. The problem of finding metric dimension is NP-complete for general graphs but it is determined for trees and some other important families of graphs. In this paper, we determine the exact value of the metric dimension of Andrasfai graphs, their complements and [formula]. Also, we provide upper and lower bounds for [formula].
3
Content available remote On {l}-Metric Dimensions in Graphs
EN
A subset S of vertices is a resolving set in a graph if every vertex has a unique array of distances to the vertices of S. Consequently, we can locate any vertex of the graph with the aid of the distance arrays. The problem of finding the smallest cardinality of a resolving set in a graph has been widely studied over the years. In this paper, we consider sets S which can locate several, say up to l, vertices in a graph. These sets are called {l}-resolving sets and the smallest cardinality of such a set is the {l}-metric dimension of the graph. In this paper, we will give the {l}-metric dimensions for trees and king grids. We will show that there are certain vertices that necessarily belong to an {l}-resolving set. Moreover, we will classify all graphs whose {l}-metric dimension equals l.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.