Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  reprezentatywne dane uczące
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Wykorzystanie sztucznych sieci neuronowych do identyfikacji mechanicznych uszkodzeń ziarniaków, prezentowanych w postaci fotografii, wymaga doboru odpowiednich cech charakterystycznych, na podstawie których zostanie przeprowadzony proces rozpoznawania. Wybór danych można zweryfikować wykorzystując narzędzie analizy wrażliwości sieci. Dzięki jego zastosowaniu można ocenić poziom istotności poszczególnych cech charakterystycznych i sprawdzić czy wszystkie wcześniej wybrane zmienne są niezbędne w procesie uczenia.
EN
Using of artificial neuron networks for identifying mechanical damage of seeds presented on photographs requires selection of proper characteristics, which can be the basis for identification process. Data choice can be verified by using the instrument of network sensitivity analysis. Thanks to its use the significance level of particular characteristics can be evaluated, and it may be verified if all selected variables are essential in the learning process.
PL
Wykorzystanie sztucznych sieci neuronowych do identyfikacji mechanicznych uszkodzeń ziarniaków na podstawie ich fotografii wymaga doboru odpowiednich cech charakterystycznych na podstawie, których zostanie przeprowadzony proces rozpoznawania. Ponieważ stosowanie sieci neuronowych do bezpośredniego mapowania zbiorów graficznych jest nieefektywne, wskazane jest użycie bloku przetwarzania wstępnego, tzw. preprocesora. Zaprojektowanie i wytworzenie właściwego systemu informatycznego dla tak sformułowanego celu pozwoliło na dokonanie transformacji danych pierwotnych (zdjęcia fotograficzne) do reprezentacji danych, która będzie odpowiednia dla wykorzystania w procesie uczenia sieci neuronowej.
EN
Use of artificial neural networks for identification of the mechanical damages to grains based on photographs requires a selection of appropriate characteristic features in order to conduct a recognition process. Since the application of neural networks for direct mapping of graphic sets is not really effective, it is recommended to use the initial processing block, so called preprocessor. Design and creation of a proper information system for this particular purpose allowed to transform raw data (photographic images) for data representation, appropriate to be used in the learning process of neural network.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.