Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  repetitive process
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Podstawą opracowania planów zapotrzebowania na siłę roboczą w przedsiębiorstwie budowlanym jest plan produkcyjny, obejmujący przewidywany do realizacji portfel zleceń. Planowanie przebiegu realizacji zleceń z wykorzystaniem metod harmonogramowania pozwalających na analizę przebiegu realizacji procesów pod względem czasu i wykorzystania zasobów pozwala na ocenę wpływu wielkości zatrudnienia na terminowość realizacji poszczególnych przedsięwzięć. W artykule przedstawiono model matematyczny problemu harmonogramowania przedsięwzięcia z ustalonym terminem dyrektywnym (zilustrowany przykładem), obejmującego procesy powtarzalne, pozwalający na określenie racjonalnego poziomu zatrudnienia brygad roboczych.
EN
The basis for the development of labor demand plans in a construction company is the production plan, including the expected portfolio of orders. Planning the course of order execution with the use of scheduling methods that allow for the analysis of the course of the execution of processes in terms of time and resource use allows for the assessment of the impact of the number of employees on the timeliness of the implementation of individual projects. The article presents a mathematical model of the problem of scheduling a project with a fixed directive deadline (illustrated by an example), involving repetitive processes, allowing to determine a rational level of employment of work brigades.
PL
W artykule rozważano problem doboru metod intensyfikacji pracy z uwzględnieniem ich kosztów i efektów w postaci skrócenia czasu trwania procesów budowlanych. Metody te obejmują: pracę w nadgodzinach, pracę w weekendy, pracę na dwie zmiany oraz zatrudnianie bardziej wydajnych brygad roboczych. Opracowano model matematyczny dla powtarzalnych procesów budowlanych, zapewniający minimalizację przerw w pracy brygad oraz redukcję czasu realizacji całego przedsięwzięcia. W celu weryfikacji poprawności modelu opracowane podejście zastosowano do wyznaczenia wariantów organizacyjnych (działań redukujących czas realizacji procesów) dla przykładowego przedsięwzięcia budowlanego.
EN
The paper considers the problem of selecting methods of work acceleration, taking into account their costs and effects in terms of reducing the duration of construction processes. These methods include: working overtime, working on weekends, working in two shifts and employing more efficient work brigades. A mathematical model was developed for repetitive construction processes, ensuring minimization of interruptions in the crews’ work and reduction of the time of the entire project. In order to verify the correctness of the model, the developed approach was used to determine organizational variants (activities that reduce process completion time) for a sample construction project.
EN
The construction contractor is concerned with reducing the cost of the project, including reducing unnecessary downtime. This is achieved when resources are fully utilized; this means the crews work continuously moving without interruption from one location to the other. However, any disturbance in the optimally scheduled workflow caused by random events is likely to result in delays, interruptions in the crews work, and productivity losses. There is therefore a need for scheduling methods that allow plans to be more resilient to disruptions and ensure a reduction in downtime and implementation costs. The authors put forward a proactive-reactive approach to the schedule risk management. Proposed method makes it possible to protect schedule deadlines from the impact of risk factors by allocating time buffers (proactive approach). It also takes into account the measures that managers take during execution in response to delays that occur, such as changing construction methods, employing extra resources, or working overtime (reactive approach). It combines both ideas and is based on project simulation technique. The merits of the proposed approach are illustrated by a case of a repetitive project to erect a number of buildings. The presented example proves that the proposed method enables the planner to estimate the scale of delays of processes’ start and consider the impact of measures to reduce duration of processes in particular locations taken in reaction to delays. Thus, it is possible to determine the optimal schedule, at which the costs of losses associated with delays and downtime are minimal.
PL
Najlepsze rezultaty realizacji przedsięwzięć budowlanych są osiągane wówczas, gdy brygady pracują bez przerw i po zakończeniu procesu na jednej części obiektu (działce roboczej) mogą rozpocząć pracę na działce kolejnej, na której zakończono wykonanie procesów poprzedzających. Dzięki ciągłości pracy brygad i powtarzalności realizacji tych samych zadań na poszczególnych działkach roboczych może wystąpić efekt uczenia się i redukcji czasu wykonania zadań. Zakłócenia w realizacji robót, na skutek oddziaływania czynników ryzyka o charakterze losowym, mogą prowadzić do opóźnień w wykonaniu procesów poprzedzających i w efekcie do przestojów w pracy brygad oraz wydłużenia czasu realizacji całego przedsięwzięcia. W związku z tym istotne jest rozwijanie metod harmonogramowania uwzględniających dynamikę rzeczywistego przebiegu wykonania procesów w zmiennych warunkach realizacyjnych. Redukcja odchyleń terminów zaplanowanych od rzeczywistych umożliwia zmniejszenie kosztów związanych z ich przekroczeniem, m.in. zamrożenia środków obrotowych w zapasach, przestojów w pracy brygad roboczych, kar umownych za niedotrzymanie terminów kontraktowych itp. Zdeterminowane terminy realizacji procesów w harmonogramie pozwalają na tworzenie planów produkcji pomocniczej, optymalizację zaopatrzenia budowy w materiały i sprzęt, pozyskiwanie zasobów ludzkich i zawieranie kontraktów z podwykonawcami. Ryzyko wystąpienia opóźnień może być uwzględnione już na etapie harmonogramowania poprzez określenie wielkości buforów czasu i ich alokację w harmonogramie. Takie podejście jest określane mianem harmonogramowania proaktywnego. Nawet mimo uodpornienia harmonogramu przy zastosowaniu metod proaktywnych, w trakcie realizacji mogą pojawić się nieprzewidziane zdarzenia, które powodują, że ochrona taka jest niewystarczająca i rozpoczęcie kolejnych zadań w zaplanowanych terminach jest niemożliwe ze względu na opóźnienia procesów poprzedzających lub niezwolnienie niezbędnych zasobów. Zachodzi wówczas konieczność reakcji - podjęcia działań redukujących odchylenia od planu lub aktualizacji planu. W reakcji na zakłócenia są podejmowane działania zmierzające do skrócenia czasu procesów jeszcze niewykonanych (zmiana wariantu technologicznego wykonania procesu, zatrudnienie dodatkowych zasobów, praca w nadgodzinach lub wydłużony tydzień pracy). W artykule zaproponowano podejście do uwzględnienia ryzyka o charakterze proaktywno-reaktywnym, wykorzystujące metodę symulacji cyfrowej w celu oszacowania wielkości opóźnień terminów rozpoczynania kolejnych procesów z uwzględnieniem reaktywnych działań redukujących czas ich wykonania na działkach roboczych, podejmowanych już w fazie realizacji. W proponowanej metodzie proaktywno-reaktywnego harmonogramowania przedsięwzięć powtarzalnych zakłada się, że czasy realizacji procesów są zmiennymi losowymi o znanej funkcji gęstości i parametrach rozkładu.
EN
It is a usual practice for a contractor to deliver several projects at a time. Typically, the projects involve similar types of works and share the same pool of resources (i.e. construction crews). For this reason, the company’s portfolio of orders considered for a particular planning horizon can be modeled as a project with repeatable processes to be performed in heterogeneous units located in a number of construction sites. Its scheduling requires determining the best sequence of the resources’ moving from unit to unit while minding the due dates related with particular orders as well as resource continuity constraints. The authors present a model of this scheduling problem in the form of a mixed-integer linear program. The aim is to schedule a portfolio of projects in a way that minimizes the total of the resource idle time-related costs, the indirect costs, and the delay penalties. The model can be solved by means of a general-purpose solver. The model is applied to schedule a portfolio of multifamily housing projects.
PL
W artykule opracowano model matematyczny umożliwiający przydział brygad roboczych do realizacji poszczególnych procesów, spośród będących w dyspozycji przedsiębiorstwa w przyjętym horyzoncie planowania, a także na ustalenie harmonogramu ich pracy - terminów realizacji przydzielonych im procesów na wznoszonych obiektach. Model ma na celu zapewnienie redukcji łącznych kosztów pośrednich i przestojów w pracy brygad oraz kar umownych. Straty spowodowane przestojami w pracy każdej brygady są obliczane jako iloczyn czasu przestoju po wykonaniu procesu na działce roboczej oraz jednostkowych (dziennych) kosztów przestoju. Wysokość kar umownych jest obliczana jako iloczyn różnicy między czasem realizacji przedsięwzięcia a czasem dyrektywnym oraz jednostkowej kary. W przypadku ukończenia realizacji w czasie krótszym od dyrektywnego wykonawca nie zostanie obciążony karami finansowymi, przyjęto również, że nie uzyska za to bonusu. Zaproponowany sposób doboru zmiennych decyzyjnych oraz zapisu analitycznego ograniczeń problemu o charakterze permutacyjnym pozwolił na sformułowanie modelu w postaci modelu mieszanego całkowitoliczbowego, do którego rozwiązania można stosować dostępne na rynku solvery. Oczywiście dotyczy to modeli problemów o niewielkiej złożoności obliczeniowej, lecz stwarza możliwość opracowania bazy przykładów testowych i weryfikacji jakości tworzonych w przyszłości algorytmów dedykowanych. Zaproponowane podejście do modelowania i rozwiązania problemu szeregowania zleceń przedsiębiorstwa przedstawiono na przykładzie realizacji stanu surowego zamkniętego sześciu budynków wielorodzinnych wznoszonych w technologii monolitycznej (fundamenty, ściany i stropy żelbetowe monolityczne; stropodach z żelbetowych płyt prefabrykowanych z warstwami izolacyjnymi; ściany ocieplone z wykorzystaniem ETICS (External Thermal Inusulation Composite System). Realizacja każdego obiektu wymaga wykonania następujących procesów powierzanych do wykonania odrębnym brygadom branżowym: roboty ziemne i fundamentowe (stan zero), konstrukcja monolityczna żelbetowa (stan surowy), dach, elewacja. Realizacja tych obiektów stanowi portfel zleceń analizowanego przykładowego przedsiębiorstwa w okresie jednego roku.
PL
W artykule zaproponowano metodę optymalizacji trójkryterialnej harmonogramów powtarzalnych procesów budowlanych. Ze względu na trudności w projektowaniu realizacji tego typu przedsięwzięć z wykorzystaniem klasycznych narzędzi i metod zaproponowano wykorzystanie algorytmów rojowych do znajdowania niezdominowanych rozwiązań problemu. Zaprezentowano także przykład zastosowania algorytmu optymalizacji rojem cząstek do opracowania harmonogramu realizacji powtarzalnych procesów budowlanych i doboru brygad roboczych w celu minimalizacji czasu realizacji przedsięwzięcia i poszczególnych obiektów lub działek roboczych oraz przestojów w pracy brygad.
EN
This paper proposes a method for tri-criteria optimization of schedules of repetitive construction processes. Due to the difficulties in designing the implementation of such projects using classical tools and methods, the use of swarm algorithms for finding non-dominated solutions to the problem was proposed. An example of the application of the particle swarm optimization algorithm to the development of a schedule for the realization of repetitive construction processes and the selection of work crews in order to minimize the execution time of the project and individual objects or work units as well as downtime in the work crews is also presented.
EN
Duration of construction projects can be reduced by harmonizing construction processes: adjusting productivity rates of specialized crews and enabling the crews to work in parallel as in a production line. This is achievable in the case of projects whose scope can be divided into units where a similar type of work needs to be conducted in the same sequence. A number of repetitive project scheduling methods have been developed to assist the planner in minimizing the execution time and smoothing resource profiles. However, the workflow, especially in construction, is subject to disturbance, and the actual process durations are likely to vary from the as-scheduled ones. The inherent variability of process durations results not only in delays of a particular process in a particular unit but also in the propagation of disruptions throughout the initially well-harmonized schedule. To counteract the negative effects of process duration variability, a number of proactive scheduling methods have been developed. They consist in some form of predicting the conditions to occur in the course of the project and implementing a strategy to mitigate disturbance propagation. This paper puts forward a method of scheduling repetitive heterogeneous processes. The method aims to reduce idle time of crews. It is based on allocating time buffers in the form of breaks between processes conducted within units. The merits of the method are illustrated by an example and assessed in the course of a simulation experiment.
PL
W celu redukcji czasu realizacji obiektów budowlanych, poprzez umożliwienie równoległej pracy brygad roboczych, jest konieczny ich podział na mniejsze części (działki robocze) o wielkości zbliżonej do wielkości frontu pracy brygad. Brygady realizują na kolejnych działkach podobne zadania, dostosowane do kwalifikacji zawodowych posiadanych przez jej członków. Do harmonogramowania realizacji przedsięwzięć powtarzalnych opracowano wiele metod, głównie dla warunków deterministycznych, gwarantujących z jednej strony minimalizację czasu ich realizacji a z drugiej zapewnienie ciągłości pracy brygad. Przestoje w pracy brygad są niekorzystne ze względu na niewykorzystanie potencjału produkcyjnego i straty finansowe spowodowane koniecznością wypłaty wynagrodzenia za gotowość do pracy lub przerzuty na inne place budowy, czy też skierowanie do realizacji innych mniej płatnych robót. Tego typu przestoje można wyeliminować w przypadku, gdy możliwe jest zachowanie stałego rytmu pracy, czyli gdy wielkość działek jest jednakowa (działki jednotypowe), bądź występuje zależność proporcjonalna między ich wielkością a pracochłonnością robót każdego rodzaju (działki jednorodne). Eliminacja przestojów prowadzi wówczas do minimalizacji czasu realizacji całego przedsięwzięcia. W przypadku działek niejednorodnych (o różnej wielkości i pracochłonności robót) zapewnienie ciągłości pracy brygad paradoksalnie powoduje wydłużenie czasu realizacji przedsięwzięcia (ze względu na późniejsze rozpoczynanie pracy kolejnych brygad). Na skutek zakłóceń realizacyjnych i oddziaływania czynników ryzyka czasy wykonania procesów na działkach roboczych są zmienne - mogą różnić się od planowanych, przyjmowanych przy tworzeniu harmonogramu. Zmienność czasów wykonania prowadzi do opóźnień w przekazywaniu frontów robót kolejnym brygadom i w efekcie do zakłóceń w ciągłej realizacji ciągów procesów i niedotrzymywania terminów dyrektywnych. Najczęściej stosowanym sposobem zapewnienia ochrony terminów dyrektywnych jest alokacja buforów czasu w harmonogramie. W artykule zaproponowano podejście do alokacji buforów umożliwiające zarówno zwiększenie niezawodności dotrzymania terminu dyrektywnego zakończenia przedsięwzięcia, jak i redukcję przestojów w pracy brygad.
PL
Terminowa i sprawna realizacja przedsięwzięć budowlanych oraz redukcja czasu ich wykonania wpływają na efektywność ekonomiczną inwestycji i działalności gospodarczej wielu podmiotów zaangażowanych w proces inwestycyjny. Cechą specyficzną produkcji budowlanej jest znaczna podatność na oddziaływanie zmiennych warunków realizacji, dlatego też przy harmonogramowaniu nie powinno się pomijać wpływu oddziaływania czynników ryzyka. Wiele przedsięwzięć budowlanych składa się z powtarzalnych procesów, są to m.in. budowy osiedli domów mieszkalnych, budowy obiektów wysokich i wielosekcyjnych, dróg, tuneli, instalacji itd. W celu redukcji czasu ich wykonania obiekty te dzieli się na działki robocze, na których powtarzane jest wykonywanie procesów przez brygady robocze o odpowiednich kwalifikacjach. W przypadku, gdy działki różnią się wielkością i nie występuje zależność wprost proporcjonalna pomiędzy ich wielkością i pracochłonnością robót (jednakowa dla każdego ich asortymentu), na czas realizacji przedsięwzięcia oraz na inne parametry wpływa kolejność zajmowania działek przez brygady. W artykule została przedstawiona metoda wyboru optymalnego harmonogramu robót powtarzalnych realizowanych na działkach niejednorodnych w warunkach ryzyka i optymalnej permutacji działek roboczych. Analizowany problem opisano za pomocą modelu programowania stochastycznego z funkcją celu minimalizującą łączne straty finansowe spowodowane niedotrzymaniem terminu dyrektywnego przedsięwzięcia, wydłużeniem okresu zatrudnienia brygad i czasu realizacji poszczególnych obiektów, na skutek przestojów spowodowanych zjawiskami losowymi. Ze względu na probabilistyczny charakter parametrów rozpatrywanego problemu do jego rozwiązania zaproponowano procedurę bazującą na zastosowaniu metody symulacji komputerowej oraz algorytmów metaheurystycznych lub – w przypadku problemów o małej złożoności z niewielką liczbą działek roboczych – metody przeglądu zupełnego zbioru rozwiązań dopuszczalnych.
EN
Most scheduling methods used in the construction industry to plan repetitive projects assume that process durations are deterministic. This assumption is acceptable if actions are taken to reduce the impact of random phenomena or if the impact is low. However, construction projects at large are notorious for their susceptibility to the naturally volatile conditions of their implementation. It is unwise to ignore this fact while preparing construction schedules. Repetitive scheduling methods developed so far do respond to many constructionspecific needs, e.g. of smooth resource flow (continuity of work of construction crews) and the continuity of works. The main focus of schedule optimization is minimizing the total time to complete. This means reducing idle time, but idle time may serve as a buffer in case of disruptions. Disruptions just happen and make optimized schedules expire. As process durations are random, the project may be delayed and the crews’ workflow may be severely affected to the detriment of the project budget and profits. For this reason, the authors put forward a novel approach to scheduling repetitive processes. It aims to reduce the probability of missing the deadline and, at the same time, to reduce resource idle time. Discrete simulation is applied to evaluate feasible solutions (sequence of units) in terms of schedule robustness.
PL
Przedsięwzięcia budowlane często obejmują swym zakresem roboty wielokrotnie powtarzane na identycznych lub podobnych obiektach lub ich częściach, zwanych działkami roboczymi. Ze względu na cykliczny charakter procesów budowlanych jest możliwe zastosowanie teorii uczenia i zapominania do planowania realizacji przedsięwzięć budowlanych. W artykule przedstawiono przykład zastosowania teorii uczenia i zapominania w procesie planowania realizacji wielokondygnacyjnego budynku mieszkalnego w warunkach losowych.
EN
Construction projects encompass repetitive works carried out on the same or similar object parts, called working units. Due to the cyclical nature of construction processes it is possible to use the learning-forgetting theory to construction projects scheduling. The article shows an example of using learning-forgetting theory in the planning of implementation multi-storey residential building in random conditions.
EN
Many construction projects contain several identical or similar units, such as floors in multistory buildings, houses in housing developments, sections of pipelines or highways. Repetitive processes arise from the subdivision of a generalized construction process into specific activities associated with particular units. In many cases it is possible to perform individual processes (repeated in each units) in alternative ways (modes). Regardless of the construction project procurement system, duration and cost are the key factors determining project’s economic efficiency and fulfillment of the owner’s needs and requirements. Minimizing project duration and cost are the most important criteria for schedule optimization. Processes that repeat from unit to unit are realized by specialized crews. Uninterrupted resource utilization becomes an extremely important issue for scheduling repetitive processes to minimize employment costs. In this paper, the problem of selecting appropriate modes and minimizing the total project cost and with a constraint on project duration is presented with respect to the continuity of the crews’ work. The paper uses the mixed integer linear programming to model this problem and uses a case study to illustrate it.
PL
Harmonizacja procesów powtarzalnych realizowanych przez brygady na działkach roboczych wymaga nie tylko określenia terminów ich realizacji, ale również odpowiedniego doboru składu brygad. Należy przy tym dążyć nie wyłącznie do minimalizacji czasu realizacji przedsięwzięcia, lecz także do zapewnienia ciągłości pracy jednostek organizacyjnych. Ze względu na zależność pomiędzy tymi dążeniami (sprzeczność celów optymalizacji), jest konieczne rozpatrywanie problemu harmonizacji procesów powtarzalnych jako dwukryterialnego zagadnienia optymalizacji i poszukiwanie rozwiązań kompromisowych. W artykule problem ten opisano za pomocą modelu matematycznego programowania liniowego mieszanego, a opracowane podejście do harmonogramowania zilustrowano na przykładzie.
EN
Harmonizing the work of crews that conduct repetitive construction processes involves not only scheduling with respect to time, but also determining the crew’s composition. With repetitive processes, minimizing the total project duration is usually not the sole objective – another one is continuity of the crews’ work. As the objectives are interdependent and contradictory, it is necessary to approach this scheduling problem as a bi criteria optimization problem, and to search for a compromise. The paper uses the mixed linear programming to model this problem and uses a case study to illustrate it.
EN
In this paper further results on the development of a SCILAB compatible software package for the analysis and control of repetitive processes is described. The core of the package consists of a simulation tool which enables the user to inspect the response of a given example to an input, design a control law for stability and/or performance, and also simulate the response of a controlled process to a specified reference signal.
12
EN
Repetitive processes constitute a distinct class of 2D systems, i.e., systems characterized by information propagation in two independent directions, which are interesting in both theory and applications. They cannot be controlled by a direct extension of the existing techniques from either standard (termed 1D here) or 2D systems theories. Here we give new results on the design of physically based control laws. These results are for a sub-class of discrete linear repetitive processes with switched dynamics in both independent directions of information propagation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.