Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  remote sensing system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the problem of testing vehicles, which are some of the main sources of air pollution. The authors suggested the remote-sensing method as a tool for the measurement of the vehicle exhaust emissions and an on-going control thereof. This is an economical solution that allows measuring a large number of vehicles in a short time. The presented work aims at an experimental validation of the measurement method of exhaust emissions on the example of a two-wheeler. To that end, two parallel laboratory tests were carried out: measurement of the exhaust emissions obtained directly from the tailpipe using the PEMS (Portable Emission Measurement System) equipment and from the exhaust cloud, utilizing a module emission gate. A significant mutual correlation of the results confirms the efficiency of the method. The highest value of the coefficient of determination was obtained for the CO2, PM and NO analyzers. Different orders of values were primarily caused by the dissipation of the exhaust gas and the influence of the ambient conditions on the measurement process. Further works are therefore necessary to allow an assessment of the actual measurement uncertainty of the equipment irrespective ofthe fueling system and type of vehicles.
EN
Groundwater can serve as an alternative measure to solve the scarcity in perennial water sources. In this perspective, a study has been carried out in Phuentsholing, Bhutan, for demarcating the most probable zone for groundwater source by an integrated application of geospatial and geophysical survey. The seven contributing factors (i.e. geology, geomorphology, drainage, landuse landcover (LULC), normalized difference vegetation index (NDVI), lineament, and slope are evaluated. Subsequently, an Analytic Hierarchy Process (AHP) is also carried out to normalize the weightage and rank of the individual factors, which are further overlaid using the Weighted Index Overlay (WIO) algorithm. The resultant groundwater potential was categorized into: extremely high (0.7%), high (54%), moderate (12.5%), low (21%), and extremely low (12%) potential zones. Each of this category is further validated by Vertical Electrical Sounding (VES-3) using Schlumberger electrode configuration and identified the most probable groundwater exploration zones towards the south-western parts of the study area. Thus, the study emphasizes on significant role of remote sensing and geographic information system (GIS) in aggregation with the geophysical and statistical measures to delineate the most probable location for groundwater resources in the Himalayan region.
EN
The article is concerned with the applicability of the robotic transportation complex of automotive barrows for haulage transportation along various transport routes of mining enterprises. The simultaneous application of robotic transport and telemetry links makes the door-to-door transportation possible, i.e. direct transportation from the starting to the final point avoiding intermediate storage and a considerable part of auxiliary equipment.
RU
В статье рассмотрена возможность применения роботизированного транспортного комплекса (РТК) самоходных машин для перемещения грузов на различных маршрутах горных предприятий. Совместное использование роботизированного транспорта и телеметрических связей позволяет осуществлять бесперегрузочную транспортировку от начального до конечного пунктов, исключая промежуточные складирования и значительную часть дополнительного оборудования.
EN
This article is the first of two papers on the remote sensing methods of monitoring the Baltic ecosystem, developed by a Polish team. The main aim of the five-year SatBałtyk (2010-2014) research project (Satellite Monitoring of the Baltic Sea Environment) is to prepare the technical infrastructure and set in motion operational procedures for the satellite monitoring of the Baltic environment. This system is to characterize on a routine basis the structural and functional properties of this sea on the basis of data supplied by the relevant satellites. The characterization and large-scale dissemination of the following properties of the Baltic is anticipated: the solar radiation influx to the sea's waters in various spectral intervals, energy balances of the short- and long-wave radiation at the Baltic Sea surface and in the upper layers of the atmosphere over the Baltic, sea surface temperature distribution, dynamic states of the water surface, concentrations of chlorophyll a and other phytoplankton pigments in the Baltic water, distributions of algal blooms, the occurrence of upwelling events, and the characteristics of primary organic matter production and photosynthetically released oxygen in the water. It is also intended to develop and, where feasible, to implement satellite techniques for detecting slicks of petroleum derivatives and other compounds, evaluating the state of the sea's ice cover, and forecasting the hazards from current and future storms and providing evidence of their effects in the Baltic coastal zone. The ultimate objective of the project is to implement an operational system for the routine determination and dissemination on the Internet of the above-mentioned features of the Baltic in the form of distribution maps as well as plots, tables and descriptions characterizing the state of the various elements of the Baltic environment. The main sources of input data for this system will be the results of systematic recording by environmental satellites and also special-purpose ones such as TIROS N/NOAA, MSG (currently Meteosat 9), EOS/AQUA and ENVISAT. The final effects of the SatBałtyk project are to be achieved by the end of 2014, i.e. during a period of 60 months. These two papers present the results obtained during the first 15 months of the project. Part 1 of this series of articles contains the assumptions, objectives and a description of the most important stages in the history of our research, which constitute the foundation of the current project. It also discusses the way in which SatBałtyk functions and the scheme of its overall operations system. The second article (Part 2), will discuss some aspects of its practical applicability in the satellite monitoring of the Baltic ecosystem (see Woźniak et al. (2011) in this issue).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.