Vehicles are important elements of military transport systems. Semi-Markov processes, owing to the generic assumption form, are a useful tool for modelling the operation process of numerous technical objects and systems. The suggested approach is an extension of existing stochastic methods employed for a wide spectrum of technical objects; however, research on light utility vehicles complements the subject gap in the scientific literature. This research paper discusses the 3-state semi-Markov model implemented for the purposes of developing reliability analyses. Based on an empirical course of the operation process, the model was validated in terms of determining the conditional probabilities of interstate transitions for an embedded Markov chain, as well as parameters of time distribution functions. The Laplace transform was used to determine the reliability function, the failure probability density function, the failure intensity, and the expected time to failure. The readiness index values were calculated on ergodic probabilities.
The accurate and effective reliability prediction of light emitting diode (LED) drivers has emerged as a key issue in LED applications. However, previous studies have mainly focused on the reliability of electrolytic capacitors or other single components while ignoring circuit topology. In this study, universal generating function (UGF) and physics of failure (PoF) are integrated to predict the reliability of LED drivers. Utilizing PoF, lifetime data for each component are obtained. A system reliability model with multi-phase is established, and system reliability can be predicted using UGF. Illustrated by a two-channel LED driver, the beneficial effects of capacitors and MOSFETs for the reliability of LED drivers is verified. This study (i) provides a universal numerical approach to predict the lifetime of LED drivers considering circuit topology, (ii) enhances the modelling and reliability evaluation of circuits, and (iii) bridges the gap between component and circuit system levels.
The main drawback of any Design for Reliability methodology is lack of easy accessible reliability models, prepared individually for each critical component. In this paper, a reliability model for SiC power MOSFET in SOT – 227 B housing, subjected to power cycling, is presented. Discussion covers preparation of Accelerated Lifetime Test required to develop such reliability model, analysis of semiconductor degradation progress, samples post-failure analysis and identification of reliability model parameters. Such model may be further used for failure prognostics or useful lifetime estimation of High Performance Power Supplies.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.