Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  regresja wektorów nośnych
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Identification of petrophysical parameters including porosity plays an important role to evaluate hydrocarbon reservoirs. A precise prediction of porosity in oil and gas reservoirs may prevent lots of costs before drilling operations. Porosity obtained from core analysis in laboratory is the most reliable one, while they are very expensive and not always accessible. Inappropriate or missing data in under-survey locations are a key challenge for reservoir engineers. In this paper, support vector regression (SVR) is used to estimate porosity in one of the oil fields in south of Iran. SVR creates models due to structural risk minimization methods which help us to produce models with better generalization and less risk of overfitting. Definitely, measured data are always contaminated with noise. One of the common methods to reduce noise and outliers in data is to process them before using them to train the algorithm; during processing, outliers and some noisy data can be suppressed from data, while it is not always easy to distinguish real data from noise. In this paper, we modified SVR to Fuzzy SVR and Fuzzy C Means (FCM) SVR, which are used to decrease effect of noise on model, and then by adding artificial noise including random noise and outliers to data we investigated how these two methods respond to presence of noise. The results show the presence of noise and outliers in data can alter the center locations and distribution of data points in clusters in FCM SVR. Similarly, it can change the variance of Gaussian membership function we used for Fuzzy SVR, but overall, the results show Fuzzy SVR model is notably more robust against noise compared to FCM SVR. Correlation coefficient (CC) calculated between model and core data decreased from 78 to 67% after noise added to data in FCM SVR model, however, calculated CC for Fuzzy SVR remained almost steady altering from 87 to 86%. Subsequently, calculated root mean square error (RMSE) between models and core data increased from 0.0376 to 0.03827 for Fuzzy SVR, while RMSE jumped from 0.0448 to 0.0517 for FCM SVR.
EN
In this study, the performance of continuous autoregressive moving average (CARMA), CARMA-generalized autoregressive conditional heteroscedasticity (CARMA-GARCH), random forest, support vector regression and ant colony optimization (SVR-ACO), and support vector regression and ant lion optimizer (SVR-ALO) models in bivariate simulating of discharge based on the rainfall variables in monthly time scale was evaluated over four sub-basins of Lake Urmia, located in northwestern Iran. The models were assessed in two stages: train and test. The results showed that the CARMA-GARCH hybrid model offered better performance in all cases than the stand-alone CARMA. The improvement percentages of the error rate in the CARMA model compared to the CARMA-GARCH hybrid model in the Mahabad Chai, Nazlu Chai, Siminehrood, and Zola Chai sub-basins were 9, 20, 17, and 6.4%, respectively, in the training phase. Among the models, the hybrid SVR models integrated with ACO and ALO optimization algorithms presented the best performance based on the Taylor diagram and evaluation criteria. Considering the use of ant colony and ant lion optimization algorithms to optimize the support vector regression model’s parameters, these models offered the best performance in the study area to simulate the discharge. The improvement percentages of the error rate in the SVR-ACO model compared to the CARMA-GARCH hybrid model in the Mahabad Chai, Nazlu Chai, Siminehrood, and Zola Chai sub-basins were 11, 10, 19, and 21%, respectively, in the training phase. In contrast, the random forest model provided the lowest accuracy and the highest error in discharge simulation.
EN
Groundwater level time series is a prime factor for variety of groundwater studies and is of great significance for the management of groundwater resources. Quality control of groundwater level observations is essential for hydrological applications. Artificial Intelligent techniques deal with highly nonlinear interactions and complex hydrological process and hence can be a better alternative for groundwater level prediction. In this research, the performances of Support Vector Regression (SVR) and SVR ensembled with metaheuristic Algorithm of Innovative Gunner (AIG) models were evaluated in simulating the monthly groundwater level of the Shabestar plain during the period 2001–2019. The 80 and 20% of the monthly dataset were used for training and testing the developed models. The efficiency of the developed models was compared using different statistical indices including correlation coefficient (R), Nash–Sutcliffe Efficiency (NSE) coefficient, Root-Mean-Square Error (RMSE), RMSE-observation standard deviation ratio (RSR) and Legates & McCabe’s Index (ELM). The results showed that the hybrid model (SVR-AIG) generates accurate estimations in combinatory patterns. Moreover, among the SVR and SVR-AIG models with different input scenarios, the SVR-AIG model showed best results for scenario 6 (M6) in both the training stage (R=0.995, NSE=0.99, RMSE=0.151 (m), RSR=0.096 and ELM =0.916) and the testing stage (R=0.941, NSE=0.879, RMSE=0.146 (m), RSR=0.346 and ELM =0.660). The hybrid SVR-AIG model is shown to be more accurate and robust than the SVR models, providing a novel capability to capture unknown time-varying dependencies. In general, the results of the proposed model are promising and it provides a reliable insight for water resources planners in conducting future research of groundwater resources.
4
Content available remote Training subset selection for support vector regression
EN
As more and more data are available, training a machine learning model can be extremely intractable, especially for complex models like Support Vector Regression (SVR) train- ing of which requires solving a large quadratic programming optimization problem. Selecting a small data subset that can effectively represent the characteristic features of training data and preserve their distribution is an efficient way to solve this problem. This paper proposes a systematic approach to select the best representative data for SVR training. The distribution of both predictor and response variables are preserved in the selected subset via a 2-layer data clustering strategy. A 2-layer step-wise greedy algorithm is introduced to select best data points for constructing a reduced training set. The proposed method has been applied for predicting deck's win rates in the Clash Royale Challenge, in which 10 subsets containing hundreds of data examples were selected from 100k for training 10 SVR models to maximize their prediction performance evaluated using R-squared metric. Our final submission having a R2 score of 0.225682 won the 3rd place among over 1200 solutions submitted by 115 teams.
5
Content available remote Greedy incremental support vector regression
EN
Support Vector Regression (SVR) is a powerful supervised machine learning model especially well suited to the normalized or binarized data. However, its quadratic complexity in the number of training examples eliminates it from training on large datasets, especially high dimensional with frequent retraining requirement. We propose a simple two-stage greedy selection of training data for SVR to maximize its validation set accuracy at the minimum number of training examples and illustrate the performance of such strategy in the context of Clash Royale Challenge 2019, concerned with efficient decks' win rate prediction. Hundreds of thousands of labelled data examples were reduced to hundreds, optimized SVR was trained on to maximize the validation R2 score. The proposed model scored the first place in the Cash Royale 2019 challenge, outperforming over hundred of competitive teams from around the world.
6
Content available remote Efficient support vector regression with reduced training data
EN
Support Vector Regression (SVR) as a supervised machine learning algorithm have gained popularity in various fields. However, the quadratic complexity of the SVR in the number of training examples prevents it from many practical applications with large training datasets. This paper aims to explore efficient ways that maximize prediction accuracy of the SVR at the minimum number of training examples. For this purpose, a clustered greedy strategy and a Genetic Algorithm (GA) based approach are proposed for optimal subset selection. The performance of the developed methods has been illustrated in the context of Clash Royale Challenge 2019, concerned with decks' win rate prediction. The training dataset with 100,000 examples were reduced to hundreds, which were fed to SVR training to maximize model prediction performance measured in validation R2 score. Our approach achieved the second highest score among over hundred participating teams in this challenge.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.