Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  reflection modeling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Modelowanie odbicia od powierzchni metalu z wykorzystaniem funkcji BRDF
PL
Do modelowania odbicia światła powszechnie jest używana funkcja rozkładu współczynnika odbicia dwukierunkowego (BRDF). Symulacja figury jasnych punktów wymaga modelowania odbicia światła od powierzchni metalu. Artykuł prezentuje przegląd najważniejszych modeli odbicia i ich właściwości. Rozpatrywane są modele He-Torrance'a-Silliona-Greenberga, Cooka-Torrance'a, Embrechtsa, Ashikhmina-Shirleya, Phonga i Warda. Analiza pozwala wybrać najbardziej przydatny model do symulacji figury jasnych punktów.
EN
BRDF is commonly used for modeling the reflection of light. Simulation of the light point figure requires modeling the reflection from the metallic surface. The paper presents review of the most important BRDF models and their features. He-Torrance-Sillion-Greenberg, Cook-Torrance, Embrechts, Ashikhmin-Shirley, Phong and Ward function are considered. The most useful model in a light point figure simulation is selected.
PL
Przedmiotem pracy jest analiza możliwości wykorzystania metody śledzenia promieni w symulacji figury jasnych punktów. Obraz źródła światła na powierzchni odbłyśnika w postaci figury jasnych punktów jest dobrym źródłem informacji o właściwościach reflektora. Jednocześnie wyznaczenie figury jasnych punktów wymaga uwzględnienia wielu złożonych zjawisk fizycznych. Z tego powodu jest to nie tylko jednym z ważniejszych, ale i ciekawszych problemów techniki świetlnej. Celem pracy jest opracowanie kompleksowych rozwiązań pozwalających na efektywną symulację figury jasnych punktów. Rozwiązań, które składają się ze znanych, odpowiednio dobranych technik, ze zmodyfikowanych metod oraz z propozycji autora będących nowymi algorytmami przydatnymi szczególnie w zastosowaniach śledzenia promieni w technice świetlnej. W pierwszej części pracy (rozdział 3.) przedstawiono opis układu optycznego oraz zdefiniowano jego geometrię. Pokazano również czynniki wpływające na kształt figury jasnych punktów. W zakresie geometrii układu zaprezentowano także propozycje autora systematyzacji opisu położenia. Druga część pracy (rozdziały 4., 5.) jest poświęcona odbłyśnikom i ich właściwościom odbijającym. Rozpatrywane są dwa aspekty tego zagadnienia. Najpierw została przeprowadzona analiza modeli odbicia światła od powierzchni odbłyśnika. Rozpatrzono kilka najbardziej reprezentatywnych modeli wykorzystujących funkcję rozkładu współczynnika odbicia dwukierunkowego (BRDF). Pod uwagę wzięto opis uwzględniający zarówno właściwości izotropowe, jak i anizotropowe. Wnioski z analizy dotyczą przydatności metod opisu odbicia do wyznaczania figury jasnych punktów. Realizacja metody śledzenia promieni wymaga zastosowania właściwego modelu opisującego odbicie światła. Tylko rozwiązanie uwzględniające odpowiednie parametry i zjawiska fizyczne daje możliwość uzyskania wiarygodnych wyników symulacji. Analiza modeli odbicia została uzupełniona propozycją autora przyspieszającą proces obliczeniowy. Drugim rozpatrywanym aspektem jest modelowanie lokalnych zmian kształtu powierzchni odbłyśników. Zostało to zrealizowane techniką dwuwymiarowego teksturowania wpływającego na kierunek wektora normalnego (techniką bump mapping). Rozpatrzono takie sytuacje, jak powstawanie wad technologicznych na powierzchni odbłyśnika, zastosowanie makrostruktury rozpraszającej oraz odbłyśniki schodkowe. Trzecia część pracy (rozdziały 6., 7.) dotyczy modelowania powierzchniowego źródła światła oraz jego wpływu na kształt i rozkład luminancji figury jasnych punktów. Uwzględnienie powierzchniowego źródła światła, szczególnie w relatywnie bliskiej odległości od powierzchni odbłyśnika jest najbardziej złożonym problemem wykorzystania metody śledzenia promieni do symulacji figury jasnych punktów. Autor zaproponował trzy rozwiązania tego problemu. Pierwsze, wykorzystujące klasyczne śledzenie promieni, pozwala wyznaczyć tylko kontur figury jasnych punktów, ale bardzo efektywnie. Drugie rozwiązanie wyznacza także rozkład luminancji figury i wykorzystuje zmodyfikowany przez autora model Yerbecka-Greenberga powierzchniowego źródła światła. Trzecie rozwiązanie jest nowym algorytmem zaproponowanym przez autora, opracowanym na podstawie mapowania fotonowego. Dodatkowo rozpatrywane są wybrane zjawiska fizyczne jako uzupełnienie i rozszerzenie opisu powierzchniowego źródła światła. Pod uwagę została wzięta emisja strumienia świetlnego z uwzględnieniem rzeczywistych (nielambertowskich) zależności kątowych oraz rozkład temperatury na powierzchni źródła. Czwarta część pracy (rozdział 8.) poświęcona jest wybranym aspektom aplikacyjnym. Autor skupił się na dwóch niestandardowych zastosowaniach figury jasnych punktów: identyfikacji pola powierzchni źródła odpowiedzialnego za powstanie danego fragmentu figury oraz próbie oceny zmian położenia źródła na podstawie zmian kształtu figury. W pracy wykorzystano wybrane zagadnienia grafiki komputerowej i techniki świetlnej w celu rozwiązania problemu wyznaczania figury jasnych punktów. Tylko połączenie doświadczeń i uwzględnienie wyników badań z obu tych dziedzin daje możliwość uzyskania poprawnych i efektywnie realizowanych symulacji
EN
The analysis of the ray tracing implementation in the light point figure simulation has been presented in the work. The source of a light image appearing on the reflector surface, in form of the light point figure, is a good source of information about headlight properties. Determining the figure requires also taking into account many complex physical phenomena. These facts cause that it is not only one of the more important problems, but also a more interesting one of lighting technology. The aim of this work is the study of complex solutions allowing an effective simulation of the light point figure. Solutions that consist of well-known but carefully selected techniques, modified methods, as well as the author's new algorithms and suggestions, which are particularly useful for ray tracing application in lighting technology, are presented and implemented by the author. The first part of the work (chapter 3) presents the optical configuration of the discussed headlight and defines its geometry. It also shows the main parameters which influence the shape of the light point figure. In the field of geometry it contains also the author's suggestion for systematization of the position description. The second part of the work (chapters 4, 5) is dedicated to reflectors and their reflective properties. Two aspects of this problem have been considered and discussed. The analysis of light reflection models, from a reflector surface, was conducted at the beginning. Several most representative models, based on the bidirectional reflectance distribution function (BRDF), were analyzed. The conclusions concern the usefulness of methods for reflection description in determining the light point figure. The proper model of light reflection is needed for the ray tracing realization. The only solution that has taken into account suitable parameters and physical phenomena gives a possibility of achieving credible results of simulation. The author's suggestion for accelerating the computational process has been added as the supplement of the reflection analysis. The local deformation of reflector's surface curvature is the second considered aspect. It has been realized using two-dimensional texture that influences the normal vector direction (bump mapping). Other problems, such as small technological defects of the reflector shape, macroscopic texture and stepped reflector, have been also considered. The third part of the work (chapters 6, 7) includes area light source modeling and its influence on the shape and the luminance map of the light point figure. Considering an area source of light, particularly in relatively close distance from reflector surface, is the most complicated problem of ray tracing application in the light point figure simulation. The author introduced three solutions to this problem. The first uses Whitted ray tracing and allows obtaining only the contour of the figure, but in a very effective way. The second solution creates also the luminance map in the light point figure and uses the author's model of an area light source build on the basis of the Verbeck - Greenberg one. The third solution, a new author's algorithm, is based on the photon mapping. The selected physical phenomena have been taken into consideration as a supplement and an extension of the source of light description. The emission of light flux with the focus on the real (nonlambertian) angular dependences and the distribution of temperature have been taken into account. The fourth part of the work (chapter 8) presents the selected application aspects. The author focuses on two nonstandard applications of the light point figure: identification of the filament field that corresponds to the appropriate place at the light point figure and estimation of the light source position on the basis of the light point figure. The selected methods of computer graphics and lighting technology have also been implemented for solving the problem of determining the light point figure. Combining experiences and considering the results of investigations from both disciplines gives the possibility of obtaining correct and effective simulations.
EN
The paper introduces a new form of the microfacet distribution (slope distribution) function for specular materials. BRDF is commonly used to modeling the reflection and refraction of light. One of its important components - the microfacet distribution function has been taken into consideration. The properties of various function examples have been compared and a new, more effective version, which allows reaching correctness of the properties of BRDF function has been introduced.
PL
Do modelowania odbicia i przenikania swiatła powszechnie jest używana funkcja rozktadu odbicia dwukierunkowego (BRDF). Jednym z jej ważnych elementów składowych jest funkcja rozkładu mikropowierzchni (funkcja dystrybucji). W artykule przeprowadzono analizę różnych stosowanych funkcji dystrybucji oraz zaproponowano jej nową postać pozwalającą uzyskać poprawny model odbicia przy lepszych parametrach obliczeniowych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.