Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  real polynomials
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available On certain weighted Schur type inequalities
EN
In this note we give sharp Schur type inequalities for univariate polynomials with convex weights. Our approach will rely on application of two-dimensional Markov type inequalities, and also certain properties of Jacobi polynomials in order to prove sharpness.
2
Content available remote The stability of polynomials with the change of their degree
EN
In the paper we considre the real polynomials. It was proved in [1], that the Hadamard product of real stable polynomial is stable. It is not difficut to see, that if for an unstable real polynomial Q(x) = a(n)x(n) + + a(n-1)x(n-1)+ ... + a(1X) + a(0) there exist numbers a(m), a(m-1),..., a(n+1) (m>n) such that the polynomial Q(x) = a(m)x(m) + ... + a(n+1)x (n+1) + Q(x) is stable then for all stable real polynomials P such that deg (Q) ≥ deg(P) the Hadamard product P x Q is stable. Hence, for Q(x) = a(n)x(n)+a(n-1) + ... + a1x + + a(0) we construct: Q(x) = a(m)x(m) + ...+a(n+1)x(n+1) + Q(x) and formulate a necessary condition on Q for Q to be Hurwitz stable. We also consider the stable prolongality of polynomials in the other direction.
PL
W pracy rozważane są wielomiany rzeczywiste. W [1] udowodniono, że iloczyn Hadamarda rzeczywistych wielomianów stabilnych jest stabilny. Można zauważyć, że jeżeli dla stabilnego wielomianu rzeczywistego Q(x) = a(n)x(n)+ a(n-1)x (n-1)+ ... +a(1)x + a(0) istnieją liczby rzeczywiste a(m), a(m-1),..., a(n+1) (m > n) takie, że wielomian Q(x) = a(m)x(m) + ... + a(n+1) +... + Q(x) jest stabilny, to iloczyn Hadamarda wielomianu Q z każdym stabilnym wielomianem rzeczywistym P takim, że deg (Q) ≥ deg(P) będzie stabilny. Dla wielomianu Q{x) = = a(n)x(n) + a(n-1) + ... + a(1)x + a(0) tworzymy zatem wielomian Q(x) = = a(m) +...+ a(n+1)x(n+1) + Q(x) i formułujemy warunki konieczne, jakie musi spełniać Q, aby wielomian Q był stabilny w sensie Hurwitza. W pracy rozważana jest również przedłużalność stabilna w przeciwym kierunku.
3
Content available remote On a characterization of the logarithm by a mean value property
EN
Any real polynomial f(x) = ax2 + bx + c, x ∈ IR, has the property that f (x)-f (y) x-y for every (x, y) ∈ IR, x ꞊ y. It turns out that that particular form of the Lagrange mean value theorem characterizes polynomials of at most second degree. Much more can be proved: J. Aczél [1] has shown that, with no regularity assumptions, a triple (/, g, h) of functions mapping IR into itself satisfies the equation f(x)-g(y) x-y= h(x + y) for all (x, y) ∈ IR, x ≠ y, if and only if there exist real constants a, 6, c such that f (x) = g(x) = ax2 + b, x + c, x ∈ IR, and h(x) = ax + b, x ∈ IR. Generalizations involving weighted arithmetic means were also considered (see e.g. M. Falkowitz [3] and the references therein) and characterizations of polynomials of higher degrees (in the same spirit) were obtained (see [4] and [5], for instance). In what follows we are going to characterize the logarithm in a similar way. To this end, denote by D the open first quadrant of the real plane IR2 with the diagonal removed, i.e. D := (O, ∞)2 \ {(x, x) e IR2 : x ∈ (0, ∞) }.Applying the classical Lagrange mean value theorem to the logaritmic function we derive the existence of a function D 3 (x, y) -> £(x,y) € intcony {x, y} such that the equality log a:-log y x-y £(z,y)
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.