Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  reakcja w fazie stałej
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The presented work deals with the possibility of synthesis of blue-violet cassiterite pigments, in which a part of tin ions was substituted by cobalt and manganese ions. In this case, phosphorous is used as a charge-compensating element. The compounds with the formula Sn0.752Co0.08P0.16Mn0.008O2 were prepared by solid state reaction, using the classical ceramic method, and also the method of mechanical activation. The goal was to develop conditions for synthesis and the most suitable preparation method of these pigments. The temperature range was chosen from 1350 °C to 1500 °C. The synthesised pigments were characterised in terms of colour properties after their application into the transparent ceramic glaze P 074 91 and into the organic binder. They were also studied with respect to their phase composition as well as the particle size distribution.
PL
Prezentowana praca poświecona jest możliwości syntezy niebieskofioletowago pigmentu kaserytowego, w którym część jonów cynowych podstawiono jonami kobaltu i manganu. W tym przypadku fosfor użyto jako pierwiastek kompensujący ładunek. Związki o wzorze Sn0,752Co0,08P0,16Mn0,008O2 przygotowano w drodze reakcji w fazie stałej, wykorzystując klasyczną metodę ceramiczną, a także metodę mechanicznej aktywacji. Cele było opracowanie warunków syntezy i najbardziej odpowiedniej metod wytwarzania tych pigmentów. Wybrano zakres temperatury od 1350 °C do 1500 °C. Pigmenty scharakteryzowano w odniesieniu do właściwości barwnych po zastosowaniu ich w przezroczystym ceramicznym szkliwie P 074 91 i organicznym lepiszczu. Zbadano również ich skład fazowy i rozkład wielkości cząstek.
EN
LiFe0.1Mn1.9O4 is expected as a cathode material for the rechargeable lithium-ion batteries. LiMn2O4 has been received attention because this has advantages such as low cost and low toxicity compared with other cathode materials of LiCoO2 and LiNiO2. However, LiMn2O4 has some problems such as small capacity and no long life. LiMn2O4 is phase transformation at around human life temperature. One of the methods to overcome this problem is to stabilize the spinel structure by substituting Mn site ion in LiMn2O4 with transition metals (Al, Mg, Ti, Ni, Fe, etc.). LiFe0.1Mn1.9O4 spinel was synthesized from Li2CO3, Fe2O3 and MnO22 powder. The purpose of this study is to report the optimal condition of Fe doped LiFe0.1Mn1.9O4. Li2CO3, Fe2O3, and MnO2 mixture powder was heated up to 1173 K by TG-DTA. Li2CO3 was thermal decomposed, and CO2 gas evolved, and formed Li2O at about 800 K. LiFe0.1Mn1.9O4 was synthesized from a consecutive reaction Li2O, Fe2O3 and MnO2 at 723 ~ 1023 K. Active energy is calculated to 178 kJmol−1 at 723 ~ 1023 K. The X-ray powder diffraction pattern of the LiFe0.1Mn1.9O4 heated mixture powder at 1023 K for 32 h in air flow was observed.
PL
LiFe0.1Mn1.9O4 jest obiecującym materiałem katodowym do zastosowania w bateriach litowo-jonowych z możliwością wielokrotnego ładowania. LiMn2O4 cieszy się dużym zainteresowaniem z powodu niskiego kosztu otrzymywania oraz niskiej toksyczności w porównaniu z innymi materiałami katodowymi typu LiCoO2 and LiNiO2 czy LiNiO2. Jednak LiMn2O4 posiada również wady: niską pojemność i krótką żywotność. Dodatkowo, przemiana fazowa LiMn2O4 zachodzi w temperaturze pokojowej. Jedną z metod rozwiązania tego problemu jest stabilizacja struktury spinelu poprzez podstawienie jonu Mn w sieci LiMn2O4 metalami przejściowymi (Al, Mg, Ti, Ni, Fe, itp.). Spinel LiFe0.1Mn1.9O4 syntezowano z proszków Li2CO3, Fe2O3 i MnO22. Celem badań było znalezienie optymalnych warunków syntezy spinelu LiFe0.1Mn1.9O4 domieszkowanego Fe. Mieszaninę proszków Li2CO3, Fe2O3 i MnO2 poddano analizie TG-DTA. W temperaturze 800 K Li2CO3 uległ rozkładowi termicznemu, w wyniku czego powstało CO2 i Li2O. LiFe0.1Mn1.9O4 zsyntezowano w wyniku reakcji następczej pomiędzy Li2O, Fe2O3 i MnO2 w temperaturze 723 ~ 1023 K. Energię aktywacji oszacowano na 178 kJmol−1 w zakresie temperatur 723 ~ 1023 K. Przeprowadzono także analizę XRD proszku LiFe0.1Mn1.9O4 wygrzewanego w 1023 K przez 32 godz. w warunkach przepływu powietrza.
3
Content available remote Structure and electric properties of double magnesium zirconium orthophosphate
EN
Double magnesium zirconium orthophosphate (MZP) is a magnesium ion conducting material. In this work, an MZP structure and properties were studied, especially in relation to its possible application as an active material in gas sensors. Double magnesium zirconium orthophosphate was produced both by sol-gel and solid state methods. The phase composition of the material was studied by X-ray diffraction method. Influence of the synthesis method on the quality of obtained material was significant. The single phase material was obtained by the sol-gel method. The precursors (ZrOCl2•6H2O, NH4H2PO4 and Mg(NO3)2•8H2O) were dissolved in water, the solutions mixed and then dehydrated for 12 h using a hot plate at 75°C. Dried powder was ball milled for 12 h and then uniaxially pressed into pellets that were sintered at various temperatures in the range of 700–1200°C. The influence of a synthesis method on electric conductivity of the samples was investigated by impedance spectroscopy (IS). Cyclic voltammetry (CV) was used to examine the possibility of application of MZP as a sensor in the presence of various gases.
PL
Podwójny ortofosforan magnezowo-cyrkonowy (MZP) jest materiałem przewodzącym jony magnezowe. W prezentowanej pracy badano budowę i właściwości MZP, szczególnie w odniesieniu do jego potencjalnego zastosowania w czujnikach gazowych. Podwójny ortofosforan magnezowo-cyrkonowy wytworzono zarówno metodą zol-żel, jak i metodą reakcji w fazie stałej. Skład fazowy otrzymanych materiałów zbadano za pomocą dyfrakcji promieniowania rentgenowskiego. Wpływ metody syntezy na jakość otrzymanego materiału był znaczący. Metodą zol-żel otrzymano materiał jednofazowy. Prekursory (ZrOCl2•6H2O, NH4H2PO4 and Mg(NO3)2•8H2O) rozpuszczano w wodzie, roztwory mieszano i odwadniona na płycie grzejnej o temperaturze 75°C przez 12 h. Wysuszony proszek mielono w młynie kulowym i prasowano jednoosiowo aby uformować tabletki, które spiekano w różnych temperaturach z przedziału 700–1200°C. Wpływ metody syntezy na przewodność elektryczną próbek badano za pomocą spektroskopii impedancyjnej (IS). Woltamperometrię cykliczną (CV) w obecności różnych gazów wykorzystano do zbadania możliwości zastosowania MPZ jako czujnika gazowego.
PL
Reakcję pomiędzy węglem i tlenkiem tytanu znajdującym się w roztworze stałym z ZrO2 wykorzystano do wytworzenia wtrąceń TiC in situ w gęstym materiale cyrkoniowym. W badaniach posłużono się proszkiem o składzie 1,5% mol. Y2O3 -18% mol. TiOi - 80,5% mol. ZrO2 lub jego mieszaniną z żywicą fenolowo-formaldehydową. Wypraski spiekano swobodnie przez 2 godz. w temperaturach z zakresu 1000+1500°C w argonie. Powierzchnie próbek nawęglano, stosując w trakcie spiekania zasypkę z sadzy. Proces tworzenia TiC, związany z konsumpcją wakancji tlenowych, prowadził do destabilizacji roztworu stałego dwutlenku cyrkonu. W wyniku tego jego regularna postać przemieniała się w odmianę o symetrii tetragonalnej, która z kolei przemieniała się podczas studzenia w odmianę o symetrii jednoskośnej. TiC tworzący się in situ był fazą niestechiometryczną, zawierającą prawdopodobnie tlen w swojej strukturze. Występował w postaci wtrąceń między- i wewnątrzziarnowych o rozmiarze od nano- do mikrometrycznego i morfologii zależnej od warunków preparatyki. Tworzenie się TiC zredukowało rozmiar ziaren osnowy cyrkoniowej i przyczyniło się do poprawy właściwości mechanicznych tworzywa cyrkoniowego. Nawęglanie zastosowane w trakcie spiekania doprowadziło do utworzenia powierzchniowej warstwy wzbogaconej we wtrącenia TiC i dlatego podwyższonej twardości. Węgiel wprowadzony do układu przed spiekaniem był czynnikiem wpływającym na grubość warstwy. Temperatura 1000°C jest najniższą temperaturą, w której występuje reakcja tworzenia się TiC in situ. Na powierzchniach próbek spiekanych w 1500°C wykryto ZrC.
EN
The reaction between carbon and titanium originated from zirconia s.s. was used to produce TiC inclusions in situ in zirconia dense materials. The co-precipitated powder composed of 1.5 mol% Y2O3, 18 mol% TiO2 and 80.5 mol% ZrO2 and its mixture with phenol-formaldehyde resin was used. The cold pressed green bodies were pressurelessly sintered for 2 hrs at the temperatures ranging from 1000 to 1500°C in argon. A carbon bed was used to carburise surface of the bodies during sintering. The formation of TiC led to destabilisation of the zirconia solid solution due to the oxygen vacancy consumption. As a result, the cubic form of the zirconia solid solution transformed to the tetragonal one, which further transformed to the monoclinic form during cooling. TiC formed in situ was the nonstoichiomelric phase which contained most probably oxygen in its structure. It appeared as inter- and intragranular inclusions in the zirconia solid solution matrix. A size of the TiC inclusion ranged from nano- to micrometric depending on the preparation conditions. The TiC formation reduced a size of the zirconia solid solution grains and improved mechanical properties of the zirconia material. Carburising of the green body during sintering led to the formation of the layer with an increased TiC concentration and therefore increased hardness. Carbon introduced to the system before sintering controlled the layer thickness. A temperature of 1000°C has been found to be the lowest at which the TiC formation proceeded. The samples heated at 1500°C showed the presence of ZrC in their surface.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.