Unsaturated organoboron and organosilicon compounds constitute an important class of organometallic compounds, which due to the presence of silyl- or boryl- group attached to Csp2 atoms, their simple and straightforward transformations in coupling and demetallation reactions, found a broad range of applications in the synthesis of fine chemicals or new materials with tailored properties. Such compounds might be synthesized in many transformations but two of them: hydrometallation and Marciniec coupling reactions permitted to obtain compounds with high effectivity, selectivity, and in the case of hydrometallation reactions with excellent atom economy. Most of these processes occur in a homogeneous phase, which ensures excellent yields and stereo- and regioselectivity. On the other hand, such conditions generate problems with catalyst reuse, product separation, and substantial consumption of toxic, volatile organic solvents. According to the assumptions of sustainable development in chemistry, the new procedures, which allow to intensify the process in terms of its efficiency, according to green chemistry rules are of prior importance in modern chemical industry. In this manuscript, the newest achievements in the application of green solvents (ionic liquids, liquid polymers, and supercritical CO2) in catalytic hydrometallation of alkynes and coupling of vinylmetalloids with olefins are discussed. Such an approach builds a new strategy for effective catalyst immobilization and its reuse, the increase of process productivity by the application of repetitive batch processes, and elimination of organic solvents, typically used in these transformations. Selected contributions in this field of chemistry are presented within this review.
N-Heterocyclic carbenes (NHCs) are powerful tools in organic chemistry, with numerous applications in academic and industrial laboratories. They are usually defined as singlet carbenes, in which the divalent carbonic centre is connected directly to at least one nitrogen atom in the heterocycle [1]. They have played an important role in organic chemistry ever since the first evidence of their existence. The isolation of stable, free 1,3‑diadamantylimidazol-2-ylidene (IAd, Fig. 1) by Arduengo et al. in 1991 was a milestone in the chemistry of carbenes [2]. From the beginnings as academic curiosities, N‑heterocyclic carbenes today are very useful compounds in a variety of organic transformations (Fig. 13). NHCs are neutral σ-donors, which form very strong bonds with the majority of transition metals (stronger than phosphines). These compounds are easy-to-make ligands with great potential in homogeneous catalysis (mainly ruthenium and palladium complexes) for large number of reactions, including the coupling reactions (Heck, Negishi, Stille, Suzuki or Sonogashira reactions) and olefin metathesis [3]. Moreover, they are very useful as organocatalysts used in the benzoin condensation, the Stetter reaction and ring-opening polymerization (ROP) or transesterification [4]. In this review, we aim to give an overview of the properties and applications of NHCs, which we expect will be a useful introduction for chemists interested in studying and applying these important compounds. The first part of this review is devoted to the main synthetic routes to NHCs, their properties and reactivity. In the second part we describe the metal complexes with NHCs as homogeneous catalysts and their applications in various types of reactions. At the end of this part of the paper the use of NHCs as organocatalysts is presented.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule omówiono podstawowe metody syntezy trój- i pięciowartościowych połączeń ołowio- i bizmutoorganicznych oraz ich wykorzystanie w reakcjach arylowania wybranych grup acyklicznych i cyklicznych połączeń węglowych i struktur heteroatomowych.
EN
Basic procedures commonly used for the preparation of tri- and pentavalent organolead and organobismuth derivatives are presented. Their use for the arylation of the selected acyclic, cyclic and heteroorganic structures is also discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.