Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rarefaction waves
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Following Berni Alder [1] and Francis Ree [2], Douglas Henderson was the third of Bill’s California coworkers from the 1960s to die in 2020 [1, 2]. Motivated by Doug’s death we undertook better to understand Lyapunov instability and the breaking of time symmetry in continuum and atomistic simulations. Here we have chosen to extend our explorations of an interesting pair of nonequilibrium systems, the steady shockwave and the unsteady rarefaction wave. We eliminate the need for boundary potentials by simulating the collisions of pairs of mirror-images projectiles. The resulting shock and rarefaction structures are respectively the results of the compression and the expansion of simple fluids. Shockwaves resulting from compression have a steady structure while the rarefaction fans resulting from free expansions continually broaden. We model these processes using classical molecular dynamics and Eulerian fluid mechanics in two dimensions. Although molecular dynamics is time-reversible the reversed simulation of a steady shockwave compression soon results in an unsteady rarefaction fan, violating the microscopic time symmetry of the motion equations but in agreement with the predictions of macroscopic Navier-Stokes fluid mechanics. The explanations for these results are an interesting combination of two (irreversible) instabilities, Lyapunov and Navier-Stokes.
EN
This memoir honors the late Berni Julian Alder, who inspired both of us with his pioneering development of molecular dynamics. Berni’s work with Tom Wainwright, described in the 1959 Scientific American [1], brought Bill to interview at Livermore in 1962. Hired by Berni, Bill enjoyed over 40 years’ research at the Laboratory. Berni, along with Edward Teller, founded UC’s Department of Applied Science in 1963. Their motivation was to attract bright students to use the laboratory’s unparalleled research facilities. In 1972 Carol was offered a joint LLNL employee-DAS student appointment at Livermore. Bill, thanks to Berni’s efforts, was already a Professor there. Berni’s influence was directly responsible for our physics collaboration and our marriage in 1989. The present work is devoted to two early interests of Berni’s, irreversibility and shockwaves. Berni and Tom studied the irreversibility of Boltzmann’s “H function” in the early 1950s [2]. Berni called shockwaves the “most irreversible” of hydrodynamic processes [3]. Just this past summer, in simulating shockwaves with time-reversible classical mechanics, we found that reversed Runge-Kutta shockwave simulations yielded nonsteady rarefaction waves, not shocks. Intrigued by this unexpected result we studied the exponential Lyapunov instabilities in both wave types. Besides the Runge-Kutta and Leapfrog algorithms, we developed a precisely-reversible manybody algorithm based on trajectory storing, just changing the velocities’ signs to generate the reversed trajectories. Both shocks and rarefactions were precisely reversed. Separate simulations, forward and reversed, provide interesting examples of the Lyapunov-unstable symmetry-breaking models supporting the Second Law of Thermodynamics. We describe promising research directions suggested by this work.
3
Content available remote Kinetic-induced moment systems for the Saint-Venant equations
EN
Based on the relation between kinetic Boltzmann-like transport equations and nonlinear hyperbolic conservation laws, we derive kinetic-induced moment systems for the spatially one-dimensional shallow water equations (the Saint-Venant equations). Using Chapman-Enskog-like asymptotic expansion techniques in terms of the relaxation parameter of the kinetic equation, the resulting moment systems are asymptotically closed without the need for an additional closure relation. Moreover, the new second order moment equation for the (asymptotically) third order system may act as a monitoring function to detect shock and rarefaction waves, which we confirm by a number of numerical experiments.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.