An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.
An investigation on an unsteady MHD natural convection flow with radiative heat transfer of a viscous, incompressible, electrically conducting and optically thick fluid past an impulsively moving vertical plate with ramped temperature in a porous medium in the presence of a Hall current and thermal diffusion is carried out. An exact solution of momentum and energy equations, under Boussinesq and Rosseland approximations, is obtained in a closed form by the Laplace transform technique for both ramped temperature and isothermal plates. Expressions for the skin friction and Nusselt number for both ramped temperature and isothermal plates are also derived. The numerical values of fluid velocity and fluid temperature are displayed graphically versus the boundary layer coordinate y for various values of pertinent flow parameters for both ramped temperature and isothermal plates. The numerical values of the skin friction due to primary and secondary flows are presented in tabular form for various values of pertinent flow parameters.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.