Water scarcity and soil erosion are the main constraints small holder farmers are facing in Tigray, the northern most part of Ethiopia. Both very high and very low precipitation can cause a damage to agriculture which is the case in semi-arid regions like Tigray. While too little rainfall cannot support the growth of crops resulting in crop failure, the short but intense rainfall also causes a runoff thereby washing away essential soil nutrients. Installation of different micro/macro-catchment rainwater harvesting can address both water scarcity and soil erosion if they are properly designed prior to construction. This research was intended to develop a methodology for identifying suitable rainwater harvesting (rwh) sites by using weighted overlay analysis. It also utilizes Ahp (analytical hierarchy process) as effective multi-criterion decision-making tool in eastern Tigray at Kilte Awlaelo district on an area of 1001 km2 . This method was chosen because it is simple to use, cost effective, flexible and widely adopted. Physical, hydrological, climate and socio-economic aspects were taken into account during criteria selection. The result indicated four suitability classes with 8.74% highly suitable areas (85.25 km2 ), 56% suitable areas (550.75 km2 ), 30.8% moderately suitable areas (303.2 km2 ) and 4.46% less suitable areas (43.87 km2 ). The produced rwh suitability map was also validated by both ground truth on google earth pro and a field trip to the study site. In situ and ex situ rwh including bench terraces, wells, and enclosure areas were identified during the field visit that verified the suitability model. Finally, depending on weight and scale of criteria and sub-criteria that matched to each identified suitable areas, different micro-catchment and macro-catchment techniques of water harvesting are recommended. This methodology can be utilized as decision-making tool for rwh practitioners, local and foreign organizations working on soil water conservation programmes and policy-makers during their early planning stages.
W artykule przedstawiono rozwiązania zastosowane w energooszczędnym domu jednorodzinnym, obejmujące instalację ścieków szarych do spłukiwania misek ustępowych oraz zbiorniki, w których gromadzone są wody opadowe i wykorzystywane do utrzymania terenu zielonego wokół budynku. Porównano wybrane koszty użytkowania budynku z elementami gospodarki o obiegu zamkniętym i budynku z tradycyjnymi rozwiązaniami instalacji.
EN
The article presents solutions used in an energy-efficient single-family house, including the installation of graywater for flushing toilet bowls and tanks in which rainwater is collected and used to maintain the green area around the building. Selected costs of using a building with circular economy elements and a building with traditional installation solutions were compared.
Present work is a case study of rainwater harvesting needs and the measures being adopted for the northern region of Haryana, India, covering the districts of Rewari and Mahendergarh. The study was necessitated following the notification by Haryana Urban Development Authority to make rainwater harvesting mandatory for its urban estates. As per the notification: "each individual plot holder having a rooftop area of 100 m2 or more, is required to provide for suitable rainwater harvesting measures". Keeping in view the available soil strata, average rainfall, rainfall intensity, social acceptability etc., a plan has been drafted to comprehensively utilize the rainfall water falling in the campus of Central University of Haryana, Mahendergarh, a campus of around 488 acres of area. Land area requirement for different suggested modes is likely to be a very small percentage of the total catchment’s area. In the first phase, ground water recharge structures for School of Engineering and Technology are suggested. Major objective of the study is to provide rainwater harvesting structures so that ground water storage is enhanced to an extent that it would suffice the drinking water needs of students and faculties residing in the campus. Another objective of the study is that these recharge structures will serve as models and infuse confidence in people to follow the good work initiated by the Haryana Urban Development Authority.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Large-scale facilities in the city cause the loss of significant amounts of rainwater, greenery and biologically active areas. Remedying this situation requires the implementation of a number of spatial planning demands. Increasing the at-tractiveness and spatial value of urbanised areas state fundamental importance for meeting the needs of local communities in the era of predicted climate change. The study shows that appropriate management of water recovered from the roofs of large-scale buildings can be used to supply significant areas of urban greenery
PL
Obiekty wielkopowierzchniowe w mieście są przyczyną utraty znacznych ilości wód opadowych, zieleni oraz powierzchni biologicznie czynnych. Naprawa tej sytuacji wymaga realizacji szeregu postulatów w zakresie planowania przestrzennego. Podnoszenie atrakcyjności i wartości przestrzennej terenów zurbanizowanych ma podstawowe znaczenie dla zaspokajania potrzeb lokalnych społeczności w dobie przewidywanych zmian klimatycznych. Z przeprowadzonych badań wynika, że wodą odzyskaną z dachów obiektów wielkopowierzchniowych można zasilać znaczne obszary zieleni miejskiej.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Artykuł przedstawia przykładową analizę efektywności ponownego wykorzystania wód opadowych z zastosowaniem instalacji dualnej w warunkach rzeczywistych opadów. Instalacja dualna została zaprojektowana dla budynku hotelowego i ma na celu zbieranie wody z dachu, magazynowanie jej w zewnętrznym zbiorniku i ponowne wykorzystanie do spłukiwania toalet. Efektywność instalacji dualnej sprawdzono poprzez przeprowadzenie symulacji numerycznej z uwzględnieniem opadu rzeczywistego o wysokości 1037 mm/rok, dla jednego roku hydrologicznego (01.11-31.10). Analizę przeprowadzono w programie SWMM 5.1. Celem artykułu była odpowiedź na pytanie, czy ścieki deszczowe zbierane z dachu hotelu podczas opadów wystarczają na pokrycie zapotrzebowania na wodę do spłukiwania toalet. Dodatkowo przeanalizowano poziom wody w zbiorniku gromadzącym wodę opadową oraz częstotliwość koniecznego dodatkowego zasilania zbiornika z instalacji wodociągowej. Uzyskane wyniki pozwoliły na zaproponowanie wymaganych usprawnień w instalacji dualnej w celu efektywniejszego odzysku wody, zwłaszcza przy bardzo nieregularnych opadach.
EN
The paper presents the exemplary efficiency analysis for rainwater reuse by a dual installation system under real precipitation conditions. The dual installation system was designed for a hotel building and its aim was to collect water from roof, store it in the external tank unit and further reuse it for toilet flushing. The efficiency of the dual installation was tested by a numerical simulation, considering the real precipitation, which covers one hydrological year (01.11-31.10) and is characterized by the annual precipitation equal to 1037 mm. The model analysis was performed in SWMM 5.1 software. The aim of the paper was to answer the question whether the rain wastewater collected from the hotel roof during rainfalls is enough to cover the water demand for toilet flushing. Additionally, the water level in storage tank and the frequency of additional storage supply was analyzed. The obtained results enabled the required improvements in the dual installation system in order to recycle water more efficiently, especially under very irregular precipitation conditions.
In the face of the current climate change, the increasing incidence of extreme weather events, prolonged periods of drought and water scarcity, attention should be paid to rational water management with particular emphasis on rainwater. Excessive development and sealing of urban catchments result in a faster outflow of water to the sewage system, which prevents it from reaching the soil and plants. This situation intensifies the drought effect and contributes to the occurrence of urban floods. In order to mitigate the negative impact of this process, solutions allowing for rainwater harvesting should be implemented. A wide variety of systems are currently available on the market to harvest and reuse rainwater. In the publication, the authors analysed four solutions: a green roof, drainage boxes, an underground storage tank, and an infiltration basin. The AHP (Analytic Hierarchy Process) method was used to select the best rainwater harvesting system, which is one of the methods of Multi-Criteria Decision Making. The analyses considered two different variants in terms of land use: a detached house located in the suburbs of a large agglomeration and a block of flats placed in the city center. According to the analysis and the assumed factors, in both cases, the best solution was to use an underground storage tank. This system proved to be the most advantageous due to the possibility of reuse of water, low construction costs, and ease of exploitation.
PL
W obliczu zachodzących obecnie zmian klimatycznych, występowania coraz częstszych ekstremalnych zjawisk pogodowych, długotrwałych okresów suszy oraz deficytu wody należy nacisk zwrócić uwagę na prowadzenie racjonalnej gospodarki wodnej ze szczególnym uwzględnieniem wód opadowych. Nadmierna zabudowa i uszczelnienie zlewni miejskich powoduje szybszy odpływu wody do kanalizacji, przez co nie trafia ona do gleby i roślin. Sytuacja ta potęguje zjawisko suszy, a także przyczynia się do występowania miejskich powodzi. Aby złagodzić negatywny wpływ tego procesu, należy wdrażać rozwiązania pozwalające na zagospodarowania wód opadowych. Obecnie na rynku dostępnych jest wiele różnorodnych systemów umożliwiających gromadzenie deszczówki oraz jej ponowne wykorzystanie. W publikacji autorzy przeanalizowali cztery rozwiązania: zielony dach, skrzynki rozsączające, podziemny zbiornik bezodpływowy oraz zbiornik infiltracyjny. Do wyboru najlepszego wariantu zagospodarowania wody deszczowej zastosowano metodę AHP (Analytic Hierarchy Process), która jest jedną z metod wielkokryterialnego wspomagania decyzji. W analizach rozważono dwa różne warianty pod względem zagospodarowania terenu: dom jednorodzinny znajdujący się na przedmieściach dużej aglomeracji oraz blok zlokalizowany w centrum miasta. Według przeprowadzonej analizy oraz założonych czynników, w obu przypadkach najlepszym według rozwiązaniem było zastosowanie podziemnego zbiornika bezodpływowego. System ten okazał się najkorzystniejszy z uwagi na możliwość ponownego wykorzystania wody, niskie koszty budowy oraz łatwość eksploatacji.
Water is a precious commodity and water scarcity has become a serious issue in many parts of the world, especially in dense urban areas. Water resources are under increasing stress due to continuous population growth, agricultural development, urbanization, and industrialization. The gap between water demand and supply has also increased in recent years. This has resulted in increasing pressure on underground water resources as well as the depletion of groundwater aquifers at an alarming rate. Thus there is a growing need to explore viable methods and techniques to manage water availability, especially in urban areas. The objective of the current study was to determine the potential for rainwater harvesting (RWH) in the twin cities of Islamabad and Riwalpindi. We evaluated its suitability to supplement the water supply as well as contribute to groundwater recharge and flood control efforts. This could in turn help to overcome water demand, could potentially recharge depleting groundwater resources and could result in the development of a currently untapped additional water source for urban hubs.
Scarcity of freshwater is one of the major issues which hinders nourishment in large portion of the countries like Ethiopia. The communities in the Dawe River watershed are facing acute water shortage where water harvesting is vital means of survival. The purpose of this study was to identify optimal water harvesting areas by considering socioeconomic and biophysical factors. This was performed through the integration of soil and water assessment tool (SWAT) model, remote sensing (RS) and Geographic Information System (GIS) technique based on multi-criteria evaluation (MCE). The parameters used for the selection of optimal sites for rainwater harvesting were surface runoff, soil texture, land use land cover, slope gradient and stakeholders’ priority. Rainfall data was acquired from the neighbouring weather stations while information about the soil was attained from laboratory analysis using pipette method. Runoff depth was estimated using SWAT model. The statistical performance of the model in estimating the runoff was revealed with coefficient of determination (R2) of 0.81 and Nash–Sutcliffe Efficiency (NSE) of 0.76 for monthly calibration and R2 of 0.79 and NSE of 0.72 for monthly validation periods. The result implied that there's adequate runoff water to be conserved. Combination of hydrological model with GIS and RS was found to be a vital tool in estimating rainfall runoff and mapping suitable water harvest home sites.
Proper management of rainwater in cities has a significant impact on improving the environmental conditions: the microclimate of a city by regulating the water cycle and reducing heat islands; developing of biodiversity; increasing health and well-being of residents. The aim of the article was to present the possibilities of improving the environmental conditions in compact urban development areas – those that additionally contribute to the shaping of architecture, and thus combine the ecological, functional, and aesthetic benefits. The article draws attention to the synergy of climate change and the new way of developing urban areas, which was presented on the example of specific solutions functioning on the transformed urban area: Clichy-Batignolles in central Paris – recognized as a model for environmental solutions, labelled Éco-Quartier. The mentioned conditions and solutions were related to the possibility of shaping urban form, with the obligation to discharge some or all of the rainwater on the building plot. On the basis of the calculations made for the runoff ratio in individual quarters, it was found that it is possible to maintain a compact urban structure and effectively manage rain water provided that appropriate engineering and urban solutions are applied. These solutions can have an architectural value. The conclusions from the analyses can be used to formulate guidelines for other European cities, which are increasingly faced with the problem of water scarcity and uncontrolled flooding.
The aim of this study was an assessment of feasibility of conversion of sewage holding (SH) tanks to rainwater harvesting (RWH) tanks in Poland. Such a conversion may partly solve the problem of water scarcity for irrigation of plants in individual small gardens and reduce tap water consumption. Seven methods of RWH tanks sizing were applied to an example of a small harvesting system of the roof area equal to the garden irrigation area of 100 m2 for three different irrigation doses. A new criterion was introduced to optimize the tank capacity. Economic optimization was provided for new RWH tanks and for the tanks adapted from abandoned SH tanks. Results obtained for a system sited in west-central Poland in an average year have shown that design capacity of RWH tanks varied markedly between sizing methods. The conversion of SH tanks to RWH tanks is profitable, especially for irrigation due to scarcity of water in relatively dry west-central regions. Conversion of individual SH tanks in a good technical state to RWH tanks is relatively simple and cheap. The potential increase in storage volume due to the conversion of individual SH tanks to RWH tanks could reach all over Poland 215–350 dam3 per year, and individually can save up to 18–25% of total annual water use.
PL
Celem pracy była ocena możliwości przekształcenia zbiorników bezodpływowych do ścieków (ZB) w zbiorniki do gromadzenia wody deszczowej (WD) w Polsce. Taka konwersja może częściowo rozwiązać problem niedoboru wody do nawadniania roślin w małych ogrodach przydomowych i zmniejszyć zużycie wody wodociągowej. Zastosowano 7 metod określania wielkości zbiornika WD na przykładzie małego systemu zbierającego opady z dachu o powierzchni równej powierzchni nawadnianego ogrodu (100 m2) oraz do alimentacji domowej instalacji wodociągowej w ilości 140 dm3/d. Wprowadzono nowe kryterium optymalizacji pojemności zbiornika, bazujące na efektywności hydraulicznej. Optymalizację ekonomiczną wykonano dla nowych zbiorników WD oraz dla zaadaptowanych z wyłączonych z eksploatacji ZB. Wyniki uzyskane dla systemu zlokalizowanego w środkowozachodniej Polsce i symulacji wykazały, że pojemność projektowa zbiorników WD różniła się znacznie między metodami wymiarowania. Konwersja ZB na zbiorniki WD jest opłacalna, szczególnie w przypadku nawadniania roślin w okresach niedoboru wody, a konwersja do instalacji wspomagającej wodociąg sieciowy jest jeszcze bardziej opłacalna, gdyż okres jej zwrotu wynosi od 2 do 6 lat. Przekształcanie indywidualnych ZB w zbiorniki WD i POŚ jest stosunkowo proste i tanie. Potencjalny wzrost pojemności retencyjnej w wyniku konwersji indywidualnych ZB na zbiorniki WD może osiągnąć w całej Polsce 215–350 tys. m3 rocznie, a indywidualnie może zaoszczędzić do 40% całkowitego rocznego zużycia wody.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, an integrated approach has been adopted for optimum selection of locations for rain water harvesting (RWH) in Kohat district of Pakistan. Various thematic layers including runof depth, land cover/land use, slope and drainage density have been incorporated as input to the analysis. Other biophysical criteria such as geological setup, soil texture and drainage streams characteristics were also taken into account. Drainage density and slope were derived from digital elevation model, and map of land use/land cover was prepared using supervised classifcation of multi-spectral Sentinel-2 images of the area. Aforementioned thematic layers are assigned respective weights of their importance and combined in GIS environment to form a RWH potential map of the region. The generated suitability map is classifed into three potential zones: high, moderate and low suitability zones consisting of area 638 km2 (21%), 1859 km2 (62%) and 519 km2 (17%), respectively. The suitability map has been used to mark accumulation points on the down streams as potential spots of water storage. In addition, site suitability of artifcial structures for RWH consisting of farm ponds, check dams and percolation tanks has also been assessed, showing 3.2%, 3% and 4.5% of the total area as a ft for each of the structure, respectively. The derived suitability will aid policy makers to easily determine potential sites for RWH structures to store water and tackle acute paucity of water in the area.
The civilization progress entails an increasing demand for water. There are many different technologies for collecting water from alternative sources. An efficient and cost-effective solution is to use small tanks for rainwater runoff from rooftops. In this way, the harvested water can be successfully used to flush toilets, which stands for 30 percent of water consumption in households. The capacity of water tanks depends on the technical and economic possibilities. Using a dual flush system in toilets that allows for both rainwater and mains water usage can lead to a significant reduction in the tank size. In Bielsko-Biała, given its environment, one-family dwellings, a rainwater tank with a capacity of only 0.25 m3 per person and a roof area of 30 m2 per person, it is possible to save almost 80 percent of treated mains water used in toilet flushing. It constitutes over 10 m3 of water per person per year. A nomogram made for choosing the right tank according to the roof area and tank capacity allows assessing the possibilities in terms of drinking water savings in any building in the environment of Bielsko-Biała.
All of the buildings in TUKE campus are connected on water main as only one source of water. There is no building with alternative source of water for non-potable uses so that potable water is used for drinking purposes as well as all others activities (flushing toilets, cleaning..). Drainage solutions of the TUKE campus are in traditional way too. The buildings situated in TUKE campus have a classical drainage system for rainwater runoff consist from traditional direct channelling of surface water through networks of pipes to sewer system except two buildings - PK6 and PK5 which have a drainage system for rainwater runoff designed through the infiltration facilities - infiltration shafts. This paper describe a big potential savings of potable water by the use of rainwater in TUKE campus as well as the big potential for “green” drainage solution - infiltration in TUKE campus.
15
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W pracy omówiono zagrożenia dla infrastruktury miast wynikające z niedoboru bądź nadmiaru wody w przyszłości, wywołane zmianami klimatu. Mianowicie, zaprezentowano wyniki badań trendów zmian w strukturze opadów w Europie, w tym w Polsce, odnośnie wysokości i częstości występowania intensywnych opadów deszczy na przykładzie danych z dorzecza Górnej Odry i Wrocławia. Wykazano potrzebę zmiany scenariuszy opadów do modelowania nadpiętrzeń w kanałach oraz zaproponowano kryteria do oceny przeciążeń kanalizacji w przyszłości, dla zachowania w dopuszczalnych obecnie (wg PN-EN752:2008) częstości wylewów z kanałów. Uzasadniono tym samym konieczność podjęcia już dzisiaj odpowiednich działań zaradczych, polegających m.in. na identyfikacji rejonów potencjalnych przeciążeń systemów odwodnień terenów w przyszłości i miejscowym zagospodarowaniu wód opadowych – zgodnie z zasadą zrównoważonego rozwoju.
EN
The paper discusses the threats to urban infrastructure resulting from the deficiency or excess of water in the future, due to climate change. It presents trends in precipitation changes in Europe, including in Poland, regarding the amount and frequency of heavy rainfall based on data from the Upper Odra Catchment and Wrocław. It has been shown the need to change rainfall scenarios for modeling the sewage system and proposes criteria to determine whether overloads the sewage system in the future, to preserve the currently acceptable frequency of floods (PN-EN752:2008). It was justified by the need to take appropriate remedial action, involving, among others, identifying areas prone to flooding in the future and rainwater harvesting – in accordance with the principle of sustainable development.
16
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Submitted paper presents risk assessment using risk analysis of the rainwater harvesting system. The aim of this article is to present selected approach in risk factors identification within proposed RWH system evaluation for an experimental family house. In our case, we were able to collect helpful information from questionnaires that later facilitated the risk identification as well as risk assessment phase along with the aid of brainstorming activities within a team of experts. The results from the risk analysis were verified by the AHP and empirical multilevel comprehensive evaluation, which was also found to be useful.
PL
W artykule przedstawiono zastosowanie metody oceny ryzyka w odniesieniu do sytemu gromadzenia wody opadowej. Celem artykułu jest identyfikacja czynników ryzyka w proponowanym dla eksperymentalnego domu systemie RWH. W naszym przypadku udało się zebrać przydatne informacje z ankiet, które później ułatwiły identyfikację oraz ocenę ryzyka. Równolegle korzystano też z burzy mózgów. Rezultaty analizy ryzyka były weryfikowane przez AHP i doświadczalną wielopoziomową ewaluację, która okazała się także użyteczna.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.