Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rail transit
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The rational planning of land around rail transit stations in cities can effectively improve the convenience of transportation and economic development of cities. This paper briefly introduced the transit-oriented development (TOD) mode of urban planning. We constructed a hierarchical structure for evaluating the quality of land planning of urban rail transit stations through the analytic hierarchy process (AHP) method. The structure started from three large aspects, i.e., traffic volume, regional environmental quality, and regional economic efficiency, and every large aspect was divided into three small aspects. Then, an optimization model was established for land planning of rail transit stations. The land planning scheme was optimized by a genetic algorithm (GA). To enhance the optimization performance of the GA, it was improved by coevolution, i.e., plural populations iterated independently, and every population replaced the poor chromosomes in the other populations with its excellent chromosomes in the previous process. Finally, the Jinzhonghe street station in Hebei District, Tianjin city, was taken as a subject for analysis. The results suggested that the improved GA obtained a set of non-inferior Pareto solutions when solving a multi-objective optimization problem. The distribution of solutions in the set also indicated that any two objectives among traffic volume, environmental quality, and economic efficiency was improved at the cost of the remaining objectives. The land planning schemes optimized by the particle swarm optimization (PSO) algorithm, the traditional GA, and the improved GA, respectively, were superior than the initial scheme, and the optimized scheme of the improved GA was more in line with the characteristics of the TOD mode than the traditional one and the PSO algorithm, and the fitness value was also higher. In conclusion, the GA can be used to optimize the planning design of land in rail transit areas under the TOD mode, and the optimization performance of the GA can be improved by means of coevolution.
EN
From ancient to modern times, in the historical process of urban development, urban transportation has been developing along with the development of the city's political, economic and cultural industries, and the relationship between each other has always been a topic constantly discussed by planning scholars. The development of urban transportation promotes the urban population gathering and industrial development, and promotes the development of urban geographical space. At the same time, it also brings endless convenience to urban residents, so that they can complete the displacement from the beginning to the destination with relatively low cost. However, with the rapid development of urban scale and the rapid growth of urban population, the problems of traffic congestion and land resource shortage in big cities of China seriously restrict the improvement of the quality of life of residents and the further development of the city. In this context, compact city is the inevitable choice for future urban development, while the transportation system supporting compact city form can only be public transportation. As a high-volume, efficient and rapid public transport mode, rail transit can not only solve the traffic congestion problem in high-density areas of cities, but also optimize the development and utilization of urban land and adjust the urban spatial layout, which is of great significance for the sustainable development of cities. The network of rail transit in Beijing becomes the backbone of public passenger transport system, and play an irreplaceable role in guiding the urban space layout adjustment, population migration and the transformation of traffic structure. The study of travel characteristics of the residents who live along the rail transit, in-depth analysis the relationship of the rail transit, the population migration and commuter travel, it is of great significance providing decision support for urban planning. Based on binary choice model, establishing the residents' travel choice model, rail transit impact model of different crowds. Study the relationship between rail transit and residents' travel characteristics, predict the rail transit to guide the trend of population migration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.