Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 156

Liczba wyników na stronie
first rewind previous Strona / 8 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  radon
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 8 next fast forward last
EN
More than 50% of the radiation dose received by underground mine workers is mainly due to the inhalation of radon (222Rn) gas and its decay products in an underground mine working space. Monitoring and controlling of 222Rn exhalation in the underground mine working play a vital role in minimizing the radiation risk hazards to the mine workers. This study discusses the contribution of mine water and uranium ore to 222Rn activity concentration in mine air and its health risk assessment. The annual effective radiation dose (ERn) due to inhalation of 222Rn for mine workers is estimated at 0.10 mSv/y. Furthermore, the estimated excess lifetime cancer risk (ELCR) and radon-induced lung cancer per million per person (RnLCC) is found to be 0.3 x 10-3 and 0.002 x 10-6. The estimated results of ERn and RnLCC due to the inhalation of 222Rn are well within the prescribed limits of the international regulatory agencies.
EN
In the years 2020-2022, the authors conducted research on the activity concentration of 222 Rn in the groundwater of the eastern part of the Izera metamorphic unit. As a result, they found potentially medicinal radon waters in hornfelses of the eastern part of the Szklarska Poręba band. The value measured in one of the water samples appeared to be the highest activity concentration of 222Rn in groundwater of Poland so far - 3368 ±61 Bq/dm3. The authors also found that outflows of potentially medicinal radon waters account for almost 85.5% (47 out of 55) of all groundwater outflows in the study area. Thanks to the large amount of data obtained, the authors calculated a new value of the hydrogeochemical back-ground of 222 Rn in the groundwater of the Izera metamorphic unit. The background is currently 17-890 Bq/dm3. In Poland, higher values have only been reported of the Lądek-Śnieżnik metamorphic unit. The research results also open the way to the possible creation of a modern radon spa in Szklarska Poręba. It could operate in Biała Dolina on the basis of both previously found resources of radon waters of the Karkonosze granite and the radon waters forming within the eastern part of the Izera metamorphic unit.
3
Content available remote Atmospheric in situ gamma-ray spectrometry for precipitation investigation
EN
The underwater gamma-ray spectrometer GeoMAREA was utilized for in situ continuous monitoring of radon progenies in the atmosphere near the city of Anavyssos, Attica, Greece, during the period from 1 November 2017 until 1 April 2018. The acquired spectra before and during rainfalls were used to derive rainwater’s spectra revealing that the major contributors to the observed photo-peaks are the progenies of 222Rn (214Pb, 214Bi). The total counting rate of the spectra and the counting rate of the net areas of 352 keV and 609 keV photo-peaks (214Pb and 214Bi, respectively) proved to be effective parameters for rainfall identification and investigation. Statistical analysis did not reveal a significant association between radon progenies and temperature, pressure, humidity and dew point during rainfalls or dry meteorological conditions. However, preferable wind directions for rainwater rich in radon progenies revealed the impact of the atmospheric masses trajectories before a precipitation event. According to HYSPLIT modelling of selected rainfall events, air masses that pass over terrestrial areas at low altitudes (< 1500 m above ground level) 48 h before the event result in rainwater enriched in radon progenies. On contrary, air masses that pass before an event over terrestrial areas at higher altitudes (> 3000 m above ground level) result in rainwater of low radon progenies concentration. Overall, the method was considered promising for continuous in situ measurements of radon progenies in the atmosphere and may extend the use of radon as a tracer for studies related to climate investigation.
EN
In the frame of Radon rEal time monitoring System and Proactive Indoor Remediation (RESPIRE), a LIFE 2016 project funded by the European Commission, the contribution of building materials of volcanic origin to indoor radon concentration was investigated. First, total gamma radiation and related outdoor dose rates of geological materials in the Caprarola area (Central Italy) were measured to define main sources of radiation. Second, 222Rn and 220Rn exhalation rates of these rocks used as building materials were measured using an accumulation chamber connected in a closed loop with a RAD7 radon monitor. Among others, the very porous “Tufo di Gallese” ignimbrite provided the highest values. This material was then used to construct a scale model room of 62 cm × 50 cm × 35 cm (inner length × width × height, respectively) to assess experimental radon and thoron activity concentration at equilibrium and study the effects of climatic conditions and different coatings on radon levels. A first test was carried out at ambient temperature to determine experimental 222Rn and 220Rn equilibrium activities in the model room, not covered with plaster or other coating materials. Experimental 222Rn equilibrium was recorded in just two days demonstrating that the room “breaths”, exchanging air with the outdoor environment. This determines a dilution of indoor radon concentration. Other experiments showed that inner covers (such as plasterboard and different kinds of paints) partially influence 222Rn but entirely cut the short-lived 220Rn. Finally, decreases in ambient temperature reduce radon exhalation from building material and, in turn, indoor activity concentration.
EN
The continuous monitoring of 222Rn activity concentration, CO2 concentration, and microclimatologic parameters (internal air temperature and relative humidity) in the Važecká Cave (Northern Slovakia) is being carried out at three monitoring stations, namely, Gallery, Lake Hall, and Entrance Hall. Radon activity concentration and CO2 concentration exhibited a clear annual variation. The daily average of radon concentration ranged 1300–27 700 Bq/m3 at the Lake Hall station and 3600–42 200 Bq/m3 at the Gallery station. Radon reached its maximum in the summer months, from June to September. The annual maximum of CO2 concentration is registered approximately one month later than radon maximum. The annual variation of radon and CO2 is controlled by the seasonal change of ventilation regime associated with the seasonal variation of the difference between the temperature measured inside the cave and the atmospheric temperature.
EN
The radon issue has been known worldwide for dozens of years. Many scientifi c (ICRP Publication No. 137), technical (ICRU Report No. 88), and legislative (Council Directive 2013/59/EURATOM (EU-BSS)) documents have been published in the last decade. More and more attention is being paid to precise quantification to determine the concentration and consequent effects of various pollutants on human health worldwide. The quality of measurement and the variety of measurement techniques increase the need to unify measurement procedures and metrology continuity. Countries around the world are beginning to unify metrological procedures for determining different quantities based on international recommendations and standards. Not only for these reasons, it became more actual a need for more accurate radon activity concentration measurement and radon metrology unification. This paper summarizes the main remarks and technical aspects to the historical development of radon metrology.
EN
The new radiation protection law in Germany, which came into effect 2018, puts greater emphasis on the protection against naturally occurring radiation, especially radon as a known health hazard. The law requires the delineation of radon priority areas, where prevention and remediation of high indoor radon concentrations should be taken with priority. In Germany, radiation protection is the administrative responsibility of the federal states. The state of Hesse has early on decided to fully survey the state for radon priority areas. To identify radon priority areas, the geogenic radon potential has to be determined. To achieve that radon, soil-gas measurements combined with soil permeability are a necessity. The University of Applied Sciences (THM) in Giessen is responsible for the radon soil-gas measurement campaign in Hessen. To achieve a statistically sound survey of the state of Hessen with an achievable amount of different measurement locations, and in the given time-frame, a geology-based concept has been designed. Taking into account the known geological information about geological structures in combination with the administrative counties, a survey strategy has been established. Prior known information regarding soil thickness, moisture, digability, and other technical limitations are used to determine the exact measuring locations. At every location, the radon activity in soil gas is measured. The soil permeability is determined for every measurement as well. Three measurements are performed at each location. Having completed the first set of measurements, the design criteria of the campaign and the practical experiences will be presented.
10
Content available Radon intercomparison tests : Katowice, 2016
EN
At the beginning of the year 2016, the representatives of the Polish Radon Centre decided to organize proficiency tests (PTs) for measurements of radon gas and radon decay products in the air, involving radon monitors and laboratory passive techniques. The Silesian Centre for Environmental Radioactivity of the Central Mining Institute (GIG), Katowice, became responsible for the organization of the PT exercises. The main reason to choose that location was the radon chamber in GIG with a volume of 17 m3 , the biggest one in Poland. Accordingly, 13 participants from Poland plus one participant from Germany expressed their interest. The participants were invited to inform the organizers about what types of monitors and methods they would like to check during the tests. On this basis, the GIG team prepared the proposal for the schedule of exercises, such as the required level(s) of radon concentrations, the number and periods of tests, proposed potential alpha energy concentration (PAEC) levels and also the overall period of PT. The PT activity was performed between 6th and 17th June 2016. After assessment of the results, the agreement between radon monitors and other measurement methods was confirmed. In the case of PAEC monitors and methods of measurements, the results of PT exercises were consistent and confirmed the accuracy of the calibration procedures used by the participants. The results of the PAEC PTs will be published elsewhere; in this paper, only the results of radon intercomparison are described.
11
Content available Radon in houses of Kowary : Sudety Mountains, Poland
EN
The presence of uranium makes the Kowary area characterized by an increased concentration of radon in the air and the living houses. Measurements of periodic radon concentrations in dwellings of Kowary were carried out three times in the last 20 years. It can be observed that 20 years ago level of radon concentrations in houses of Kowary were lower than today. Measurements carried out in Kowary over 20 years have shown that residents are exposed to radon concentrations, which often exceed 300 Bq•m-3 – a reference level recommended by the European Union. The present geometric mean of radon concentration in houses of Kowary (260 Bq•m-3 ) exceeds the geometric mean of radon concentration of buildings in the rest of Poland (142 Bq•m-3 ).
EN
More than 40 years ago, Public Health England (PHE and its predecessor organizations) established a radon laboratory to deliver services for radon measurements in homes and workplaces in the UK [1]. A key factor in developing these services was to set up stringent quality control and assurance protocols to enable the delivery of reliable and accurate results. There are nearly 40 checkpoints in the process, most exceeding 94% pass rate, starting from a quality check of poly-allyl diglycol carbonate (PADC) polymer and ending with a result modified by seasonal and occupancy correction factors. This work aims to show how to obtain the reliable results of radon measurements.
EN
More than half of the total natural ionizing radiation dose received by the human population is caused by radon and thoron (Rn and Tn) and their progeny. To estimate the level of radiation due to radon and thoron and their progeny, an investigation was conducted in a residential area near the world’s largest open-pit mine of Bayan Obo in Inner Mongolia, China. The concentration of Rn, Tn, and their decay products in air and soil were studied by using AlphaGUARD, RAD7, and ERS-RDM-2S for a discrete period of time in three different locations. The average indoor concentration of radon and thoron was 62.6 ± 44.6 Bq/m3 and 108.3 ± 94.5 Bq/m3 respectively, and the outdoor concentration was 12.9 ± 6.3 Bq/m3 and 55.8 ± 18.5 Bq/m3 , respectively. Relatively high concentrations were recorded in the area near to the mine, with a significant increasing trend observed in indoor thoron concentration. A prominent hotspot in thoron concentration was found in a single-story house with values 747 ± 150 Bq/m3 . The equilibrium equivalent thoron concentration (EECTn) varies from 0.48 Bq/m3 to 2.36 Bq/m3 with an arithmetic mean of 1.37 ± 0.64 Bq/m3 , and comparatively higher than EECRn. Concluding that the mining activity at Bayan Obo mine is significantly increasing the level of indoor thoron and its progeny in surroundings. It is suggested to further systematically investigate the indoor Rn and Tn progeny concentrations in the residential dwellings of the Bayan Obo mining area, and 232Th content of the building materials, to provide a basis for calculating the radiation dose.
EN
The exposure from radon, thoron, and thoron progeny was measured for 45 dwellings in high background radiation area in Takandeang, Indonesia with ambient dose equivalent rate ranging from 0.34 µSv•h-1 to 1.90 µSv•h-1 . The measurement was taken using passive radon and thoron discriminative detector and thoron progeny detector. This measurement was taken from November 2018 to October 2019, and within one month the detector would be replaced with a new detector. The concentrations of radon, thoron, and thoron progeny were calculated as 42–490 Bqm−3 , 20–618 Bqm−3 , and 4–40 Bqm−3 , respectively. The concentrations for outdoor were 49–435 Bqm−3 , 23–457 Bqm−3 , and 4–37 Bqm−3 , respectively, and the annual effective dose was 9.8–28.6 mSv•y-1 . Based on the result of Spearman’s correlations analysis between the indoor radon and thoron concentrations and between the indoor thoron progeny and thoron concentrations, we suggest that exposure to thoron cannot be predicted from exposure to radon, and the equilibrium equivalent thoron concentration has a large uncertainty when it is estimated from thoron concentration assuming a single thoron equilibrium factor.
EN
Objectives: Recent results of epidemiological and medical statistics studies of lung cancer and indoor radon in different regions of the world make a relevant new combined analysis of residential exposure health effects. In particular, new data were obtained by means of a meta-analysis of case-control studies as well as taking into account a confounding effect of human papillomavirus infection in studies of geographically aggregated data. Materials and methods: Two sources of epidemiological data are considered: (1) studies of ecological design and (2) case-control studies. Ecological studies included the analysis performed for the USA counties and Russian oblasts with adjusting for the main confounders. Data on the case-control studies were gained from the meta-analysis of 31 individual studies with a weighting of obtained odds ratios according to the quality of radon exposure reconstruction and size of the reference group. Estimations of lung cancer excess relative risk (ERR) associated with indoor radon exposure are combined. Results: Two types of epidemiological study design provided generally consistent EER estimations. The combined value of ERR due to radon exposure is 0.14 (90% CI: 0.10–0.18) per 100 Bq/m3 . Conclusion: Available geographically aggregated data in regions of Russia and the United States and the meta-analysis of case-control studies conducted in a large number of countries confirm the association of lung cancer with indoor radon exposure.
EN
Four years of observations of radon, meteorology and atmospheric pollution was used to demonstrate the efficacy of combined diurnal and synoptic timescale radon-based stability classification schemes in relating atmospheric mixing state to urban air quality in Zgierz, Central Poland. Nocturnal radon measurements were used to identify and remove periods of non-stationary synoptic behaviour (13–18% of each season) and classify the remaining data into five mixing states, including persistent temperature inversion (PTI) conditions, and non-PTI conditions with nocturnal conditions ranging from well mixed to stable. Mixing state classifications were performed completely independently of site meteorological measurements. World Health Organization guideline values for daily PM2.5/PM10 were exceeded only under strong PTI conditions (3–15% of non-summer months) or often under non-PTI stable nocturnal conditions (14–20% of all months), when minimum nocturnal mean wind speeds were also recorded. In non-summer months, diurnal amplitudes of NO (CO) increased by the factors of 2–12 (3–7) from well-mixed nocturnal conditions to PTI conditions, with peak concentrations occurring in the morning/evening commuting periods. Analysis of observations within radon-derived atmospheric mixing ‘class types’ was carried out to substantially clarify relationships between meteorological and air quality parameters (e.g. wind speed vs. PM2.5 concentration, and atmospheric mixing depth vs. PM10 concentration).
17
Content available remote Ochrona budynków przed naturalnymi źródłami promieniowania jonizującego
PL
W artykule przedstawiono udział różnych źródeł promieniowania jonizującego w średniej rocznej dawce otrzymanej przez statystycznego mieszkańca Polski. Opisano specyfikę radonu oraz jego wpływ na zdrowie człowieka. Wymieniono etapy w procesie uwalniania, migracji oraz wydobywania się radonu z podłoża do powietrza atmosferycznego lub do powietrza wewnątrz budynku. Zaprezentowano środki zaradcze w przypadku zagrożenia radonem.
EN
The article presents the share of various sources of ionizing radiation in the average annual dose a statistical inhabitant of Poland is exposed to. The specificity of radon and its influence on human health were described. The stages in the process of release, migration and extraction of radon from the ground into the atmospheric air or into the air inside the building are listed. Countermeasures in the event of a radon threat are presented.
PL
Nowe regulacje w prawie polskim dotyczące radonu są konsekwencją implementacji zaleceń zawartych w opublikowanej w 2014 roku Dyrektywie Rady UE 2013/59/EURATOM, która ustanowiła podstawowe normy bezpieczeństwa w celu ochrony przed zagrożeniami wynikającymi z narażenia na działanie promieniowania jonizującego, w tym również na radon. Nowa Dyrektywa zaktualizowała i ujednoliciła prawodawstwo w krajach członkowskich UE w oparciu o najnowsze badania naukowe i doświadczenia służb dozorowych. Zapisy Dyrektywy odzwierciedlają wyniki dwudziestoletnich badań w zakresie ochrony radiologicznej (IAEA, WHO, OECD, ICRP). W związku z koniecznością nowelizacji przepisów w Polsce powołano zespół do spraw opracowania koncepcji wdrożenia do prawa polskiego Dyrektywy (zarządzenie Ministra Środowiska z dnia 8 sierpnia 2014, Dz. Urzędowy MŚ, poz. 50). Autorzy artykułu brali udział w pracach tego zespołu, dotyczących wprowadzenia nowych zapisów odnośnie narażenia na radon. Efektem pracy zespołu był raport, przekazany w listopadzie 2015 Ministrowi Środowiska. Raport ten stanowił podstawę do dalszych prac nad nowelizacją ustawy Prawo atomowe, której tekst jednolity został opublikowany we wrześniu 2020 – Dz.U. 2019, poz. 1792.
PL
Projekt instalacji wentylacji domu jednorodzinnego, choć pozornie wydaje się prosty, powinien uwzględniać klika aspektów dotychczas pomijanych w opracowaniach. Aby uzyskać spodziewany efekt – czyli doskonałą jakość powietrza wewnętrznego – należy poświęcić dużo więcej czasu na analizę potencjalnych strumieni zanieczyszczeń, np. radonu, i odpowiednio zaprojektować instalację.
EN
The design of a single-family house ventilation system, although seemingly simple, should include several aspects that have been omitted in the studies. In order to achieve the expected effect – that is, excellent indoor air quality – much more time should be spent to analyze potential contaminant streams, eg. radon, and design the installation accordingly.
PL
Radon jest radioaktywnym gazem szlachetnym, obecnym w środowisku człowieka. Jest on drugim po paleniu papierosów czynnikiem odpowiedzialnym za powstawanie raka płuc. W 2019 r. do prawa polskiego została zaimplementowana Dyrektywa Rady Unii Europejskiej 2013/59/EURATOM (tak zwana BSS) wymagająca czynnej ochrony przed stężeniami radonu powyżej 300 Bq/m3. Jednak problem jakie stężenia radonu zwiększają ryzyko powstawania nowotworów płuc jest tematem dyskusji naukowej i nie jest jednoznaczny. Cytogenetyczne efekty działania radonu można pokazać przy pomocy testu kometowego w limfocytach krwi obwodowej oraz przy pomocy analizy częstości mikrojąder w komórkach nabłonkowych pochodzących z worka policzkowego.
EN
Radon is a radioactive noble gas present in the human environment. It is the second factor behind lung cancer after smoking cigarettes. In 2019, the European Council Directive 2013/59/EURATOM (so-called BSS) was implemented into Polish law, requiring active protection against radon concentrations above 300 Bq/m3. However, the problem of what radon levels increase the risk of lung cancer is a topic of scientific discussion and is not clear. The cytogenetic effects of radon can be demonstrated using a comet assay in peripheral lymphocytes or the micronucleus frequency analysis in buccal epithelial cells.
first rewind previous Strona / 8 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.