Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  radiochemical separation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Production and quality control of 66Ga radionuclide
EN
The purpose of this study was to develop the required targetry and radiochemical methods for production of 66Ga, according to its increasing applications in various fields of science. The 66Zn(p,n)66Ga reaction was selected as the best choice for the production of 66Ga. The targets were bombarded with 15 MeV protons from cyclotron (IBA-Cyclone 30) at the Nuclear Research Center for Agriculture and Medicine (NRCAM) with a current of 180 mA for 67 min. ALICE and SRIM (Stopping and Range of Ions in Matter) nuclear codes were used to predict the optimum energy and target thickness. Targets were prepared by electroplating 95.73% enriched 66Zn on a copper backing. Chemical processing was performed by a no-carrier-added method consisting of ion exchange chromatography and liquid-liquid extraction. Anion exchange chromatography was also used for the recovery of target material. Quality control of the product was carried out in two steps of chemical and radionuclide purity control. The activity of 66Ga was 82.12 GBq at EOB and the production yield was 410.6 MBq/mAh. The radiochemical separation yield was 93% and the yield of chemical recovery of the target material was 97%. Quality control tests showed a radionuclide purity higher than 97% and the amounts of chemical impurities were in accordance with the United States Pharmacopoeiae levels.
2
Content available Production and quality control of 65Zn radionuclide
EN
Zinc-65 was produced in the Nuclear Research Center for Agriculture and Medicine (NRCAM) by the bombardment of natural copper targets with 30 MeV protons via the 65Cu(p,n)65Zn nuclear reaction. Natural copper was used instead of enriched 65Cu because of the quick decay of undesired radioisotopes. It was also more desirable for cost effectiveness. Cross-section calculations were performed by ALICE nuclear code and the results were compared with the experimental data given in the literature, which showed good agreement. A 160 mi m copper layer target was bombarded with a 150 miA current of 30 MeV protons for 20 min, which resulted in 170 MBq activity of 65Zn product. The yield was 3.4 MBq/miAh. The concentration of the product was 6.8 MBq/ml. Radiochemical separation was carried out by anion exchange chromatography with the yield of about 98%. Quality control of the final product showed a radionuclide purity of more than 98% and no traces of possible impurities (copper) were detected by a colorimetric method with a 1 ppm detection limit using dithizone as the reagent. The materials used for targetry and chemical separation were quite cost-effective.
EN
No carrier-added 18F fluoride was produced via the 19F(n,2n)18F reaction by 14 MeV neutron irradiation of 2-fluoroaniline and subsequent extraction of the produced 18F fluoride ion with water. The fluoride was then purified by liquid chromatography on a Chromabond-NO2 column. The time required for all chemical procedures was about 1 h. The average chemical separation yield was about 70%. The 18F activity obtained after 3 hours of irradiation at a flux rate of 108 n cm-2s-1 after a necessary 20-min delay was equal to several kBq per gram of fluorine in a 2-fluoroaniline sample, in accordance with the theoretically expected value. Improvement of the 18F production yield can be achieved by increasing neutron fluxes. Neutron generators with 14 MeV neutron fluxes of the order of 1010 n cm-2s-1 can produce tens MBq of 18F, sufficient for whole-day work in biomedical applications. Our results show that 14 MeV neutron irradiation of 2-fluoroaniline is a low cost alternative for the production of this nuclide in the countries which do not posses either cyclotrons or electron linear accelerator facilities.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.