Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  radiative heat transfer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The improvement in thermal insulation of building envelopes minimizes the problem of water vapor condensation on their internal surfaces. However, the probability of water vapor condensation on the external surfaces increases. This may take place under radiative cooling conditions when the temperature on these surfaces drops below the air temperature. The aim of this article is to analyze the influence of different factors on the possibility of external condensation. Relevant computational examples and practical insights based on real-life observations are shown. It was found that the basic factors contributing to the condensation of water vapor on the external surfaces are the horizontal or oblique placing of the envelopes, no wind, cloud-less sky and low thermal transmittance of the envelopes. The described phenomenon can be mitigated by covering the surfaces with a low-emission coating.
EN
A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
PL
W artykule opisano sposób adaptacji metody śledzenia promienia odwrotnego do badania i symulacji radiacyjnej wymiany ciepła w układach wypełnionych ośrodkami optycznie czynnymi. Przeprowadzono symulacje rozchodzenia się promieniowania cieplnego dla modelu pieca przemysłowego wypełnionego ośrodkiem absorbująco - promieniującym. Oceniono i porównano dokładność uzyskanych wyników oraz czas trwania obliczeń z wynikami uzyskanymi z wykorzystaniem różnych metod symulacyjnych.
EN
In the article the possibility of adaptation backward ray tracing method to modeling and simulation radiative energy transfer in systems with participating media was shown. Calculations were performed for furnace chamber filled with absorbing - emmiting gas. Accuracy and duration of calculations using different methods were compared.
EN
In the article the selected methods of modeling radiative energy transfer in participating media were compared. Calculations were performed for furnace chamber filled an absorbing-emmiting gas. Accuracy and duration of calculations using different methods were compared.
EN
This paper describes results of the mathematical modelling of steady-state and transient physical phenomena taking place in the heating channels of a coke oven battery. A formulated system of standard Computational Fluid Dynamics (CFD) equations coupled with User Defined Functions is solved numerically using commercial software Ansys Fluent. Finally, the developed 3-D model is used to examine the influence of selected operating parameters on the resulting temperature, velocity and concentration fields within considered object. The obtained results are briefly discussed considering their physical correctness related to industrial measurements.
PL
W artykule opisano sposób modelowania radiacyjnego transportu energii w układach wypełnionych ośrodkami absorbująco-emitującymi z wykorzystaniem metody śledzenia promienia odwrotnego uzupełnionej dodatkowymi procedurami. Przedstawiono przykładowy model rozchodzenia się promieniowania cieplnego w układzie składającym się komory pieca przemysłowego wypełnionego ośrodkiem aktywnym. Zastosowano różne podejścia do analizy emisji i absorpcji gazu.
EN
The article describes the way of modeling of radiative heat transfer in systems filled an absorbing and emitting gases using backward ray tracing method together with additional scripts. The model of propagation thermal radiation in chamber of industrial furnace filled an active medium was shown. Different models of absorption and emission of gases were put into use.
EN
Modelling of fossil fuel utility and industrial boilers has reached a remarkable development in recent years. Particular attention in optimisation of a utility boiler furnace operation, is given to the flame geometry and position. Combustion chamber designers endeavour to achieve optimum operating conditions that give maximum combustion efficiency, as well as minimum pollutant formation rate. The application of computational fluid dynamics (CFD) modelling technique and other advanced mathematical methods offer opportunities for analysis, optimisation and options examination in order to increase the overall efficiency of the energy facilities. The main purpose of the present study was to investigate how the results obtained with two radiative heat transfer methods, the PI approximation method and the discrete ordinates (DO) method, fit temperature field in a boiler furnace on pulverised coal, with implemented over-fire air (OFA) ports. The framework of the CFD modelling approach is described. The numerical modelling results for boiler baseline operating conditions are com-pared with a test matrix of local temperature measurements. An accuracy analysis of the PI and DO methods is done on a basis of a comparison between the numerically obtained and measured temperature profiles.
EN
In the article the method of testing the influence of heat element geometrical dimensions on distribution of heat irradiance on furnace’s wall was shown. Calculations were realized using backward ray tracing method in Radiance system together with additional scripts. The results and their interpretations were presented.
PL
Artykuł prezentuje eksperyment obliczeniowy z wykorzystaniem komercyjnego programu Flux 2d uzupełnionego autorskim programem Trad o możliwość uwzględnienia radiacyjnej wymiany ciepła między elementami modelu obliczeniowego. Funkcjonalność programu przedstawiono na przykładzie czterech wariantów obliczeniowych. Maksymalna odchyłka temperatury we wsadzie uzyskana w tym eksperymencie wynosi ok. 145 oC przy nagrzewaniu wsadu do temperatury ok. 1000 oC. Eksperyment prowadzono jako dwuwymiarowy (2 D) dla układu płaskiego.
EN
The Paper presents a numerical experiment in which commercial program Flux 2d supplemented with authors program Trad (for radiative heat transfer) was used. Flux 2d features extended with authors program was shown on example of four calculation variants. Variants differs in radiative heat transfer model. Maximum temperature difference obtained in this experiment was 145 oC in charge area (charge was heated to 1000 oC).
EN
The article focuses on methods of modelling radiative transfer of energy in systems with absorbing-emitting media. The differential and integral approaches to the problem are discussed. Furthermore, the article explores the possibility of adapting the Radiance software package, which is based on the backward ray tracing technique, for modelling and simulation of radiative heat transfer in systems with participating media.
PL
Artykuł prezentuje eksperyment obliczeniowy z wykorzystaniem komercyjnego programu Flux 2d uzupełnionego autorskim programem Trad o możliwość uwzględnienia radiacyjnej wymiany ciepła między elementami modelu obliczeniowego. Funkcjonalność programu przedstawiono na przykładzie czterech wariantów obliczeniowych, dla których porównano wyniki obliczeń wykonanych z uwzględnieniem radiacyjnej wymiany ciepła i bez uwzględnienia wymiany radiacyjnej. Maksymalna odchyłka temperatury we wsadzie uzyskana w tym eksperymencie wynosi ok. 145°C przy nagrzewaniu wsadu do temperatury ok. 1000°C.
EN
The paper presents a numerical experiment in which commercial program Flux 2d supplemented with authors program Trad (for radiative heat transfer) was used. Flux 2d features extended with authors program was shown on example of four calculation variants. Variants differs in radiative heat transfer model. Maximum temperature difference obtained in this experiment was 145°C in charge area (charge was heated to 1000°C).
PL
W artykule zaprezentowano sposób badania wpływu wymiarów geometrycznych wężownicy grzejnej pracującej w piecu rezystancyjnym ze względu na rozkłady natężenia napromienienia. Symulacji dokonano za pomocą systemu Radiance wraz z dodatkowymi skryptami. Przedstawiono przykładowe wyniki dla ściany pieca rezystancyjnego i wężownicy grzejnej o przekroju prostokątnym oraz ich interpretację.
EN
In the article the optimization method of geometrical dimensions for resistance furnace's heat element was shown. Calculations were realized using backward ray tracing method in Radiance system together with additional scripts. The results and their interpretations were presented.
EN
Basic equations of radiative heat transfer have been presented, along with typical Dirichlet and Neumann boundary conditions for established stales. Possible methods of solving integral equations describing radiative heat transfer have been identified, and these have been limited to iterative and projection methods. We restrict to method of successive approximations, discretization method, Galerkin method, collocation method and method of special kernels. Moreover, quadratures and probabilistic methods frequently used in the radiosity are presented. Presented problem is illustrated by example.
EN
A new method is proposed to calculate temperature, conductive and radiative heat flux distributions in a medium that is exposed to radiation. The medium is emitting, absorbing and anisotropically scattering the radiation. The method is based on the simulaneous solving (with the finite element method) of two non-linear and mutually conjugated equations describing distribution of temperature and the so-called radiation function in the medium. The latter function, in the case of isotropic scattering, is proportional to the local energy density of the radiation. An example of application of the method to heat transfer processes occurring in the layer of high-temperature lightweight thermal insulation is given.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.