Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  radial flux permanent magnet motor
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents a comparison of an AC radial flux interior permanent magnet (IPM) motor with the distributed winding (DW) and concentrated winding (CW). From time to time, manufacturers of electric vehicles change the design of electric motors, such changes may include changing the DW into CW and vice versa. A change to the winding in a radial permanent magnet synchronous motor may lead to a change in motor parameters during motor operation and /or change in the distribution of the magnetic field and thermal circuit of the electrical machine. The electromagnetic analysis, efficiency map, mechanical stress, and thermal analysis of the machine with the DW and CW are presented in this paper. This article describes the advantages and disadvantages of selected stator winding designs and helps understand manufacturers’ designers how the DW and CW play a key role in achieving the designed motor’s operational parameters such as continuous performance. Analyzing the performance of both machines will help identify their advantages and disadvantages with regard to thermal phenomena, magnetic field and operational parameters of the presented IPM prototypes. Both prototypes are based on commonly used topologies such as 12/8 (slot/pole) and 30/8 (slot/pole) IPM motors consisting of magnets arranged in a V-shape. The AC IPM motor was designed for an 80 kW propulsion system to achieve 170 N·m at a base speed of 4 500 rpm. Modern CAD tools are utilized throughout the numerical computations based on 2-D finite element methods. Selected test data are used to verify and validate the accuracy of finite element models.
EN
This paper presents a review of the electromagnetic field and a performance analysis of a radial flux interior permanent magnet (IPM) machine designed to achieve 80 kW and 125 Nm for an electric and hybrid traction vehicle. The motor consists of a 12-slot stator with a three-phase concentrated winding as well as an 8-pole rotor with V-shaped magnets. Selected motor parameters obtained from an IPM prototype were compared with the design requirements. Based on the electromagnetic field analysis, the authors have indicated the parts of the motor that should be redesigned, including the structure of the rotor core, aimed at enhancing the motor’s performance and adjusting segmentation for magnet eddy current loss reduction. In addition, iron and PM eddy current losses were investigated. Moreover, transient analysis of current peak value showed that the current may increase significantly compared to steady-state values. A map of transient peak current load vs. torque load plotted against rotor speed was provided. Based on the numeric and analytical results of physical machine parameters, the authors indicate that collapse load during the motor’s operation may significantly increase the risk of permanent magnet (PM) demagnetization. It was also found that collapse load increases the transient torque, which may reduce the lifetime of windings.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.