Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  równoległe przetwarzanie obrazów
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tracking systems based on Track-Before-Detect (TBD) scheme support tracking of low-SNR objects even if object signal is hidden in a noise. In this paper proposed method [1] is tested using Spatio-Temporal TBD algorithm with an additional code profiling using Nvidia CUDA computational platform. Different implementations are possible and the best solution for downsampled approach is based on the separate, register based state-space (without Shared Memory) and texture cache for input measurements.
PL
Algorytmy śledzenia przed detekcją umożliwiają śledzenie obiektów w warunkach niskiej wartości SNR (Signal-to-Noise Ratio) jednak są one bardzo złożone obliczeniowo. Wykorzystując GPGPU (programowalny procesor graficzny) możliwa jest implementacja czasu rzeczywistego. Dla zaproponowanego w [1] rozwiązania optymalizacji implementacji algorytmu z decymacją sygnału wyjściowego możliwe jest kilkukrotne skrócenie czasu obliczeń. W artykule przedstawiono i porównano dalsze możliwe rozwiązania optymalizacji z wykorzystaniem platformy programowej Nvidia CUDA dla rekurencyjnego algorytmu Spatio-Temporal Track-Before-Detect. Przestrzeń stanów może być decymowana w celu lepszego wykorzystania szybkiej pamięci współdzielonej dostępnej w GPGPU, podczas gdy dane wejściowe oraz wyjściowe przechowywane są w wolnej pamięci globalnej. Wykorzystując testy numeryczne z wykorzystaniem opracowanego oprogramowania do profilowania kodu źródłowego stwierdzono, że najbardziej wydajnym rozwiązaniem spośród analizowanych jest implementacja z oddzielnymi kernelami przetwarzania dla poszczególnych wektorów ruchu, wykorzystania rejestrów do przechowywania danych przestrzeni stanów w miejsce pamięci współdzielonej oraz pamięci texture cache do buforowania danych wejściowych. W przypadku niewykorzystywania metody decymacji optymalnym jest wykorzystanie oddzielnych kerneli, rejestrów dla przestrzeni stanów i bezpośredniego dostępu do pamięci globalnej dla danych wejściowych.
2
EN
A computation speed of Track-Before-Detect algorithm with GPGPU implementations are compared in the paper. The conventional and subpixel variants for different thread processing block sizes are compared. Decimation of the state space for reduction of the external memory accesses is assumed. The GPGPU code profiling technique by the source code synthesis is applied for finding of the best parameters and code variants for particular GPGPU.
PL
Systemy śledzenia oparte na schemacie śledzenia przed detekcją (TBD) umożliwiają śledzenia obiektów o niskim stosunku sygnału do szumu (SRN<1), co jest ważne dla zastosowań cywilnych i wojskowych. Konwencjonalne systemy śledzenia oparte na detekcji i śledzeniu nie są odpowiednie z uwagi na dużą ilość fałszywych lub utraconych detekcji. Najważniejszą wadą algorytmów TBD jest skala obliczeń, ponieważ wszystkie hipotezy (trajektorie) powinny być testowane, nawet jeśli nie ma obiektu w zasięgu. Proponowana metoda [8] oparta o decymację daje istotną (kilka razy) redukcję czasu przetwarzania na GPGPU. Programowalne karty graficzne (GPGPU) zawierają dużą ilość jednostek przetwarzania (procesorów strumieniowych) z bardzo małą, ale szybką pamięcią współdzieloną oraz dużą, ale bardzo wolną pamięcią globalną. Proponowana metoda [8] została w artykule przetestowana z wykorzystaniem algorytmu Spatio-Temporal TBD z dodatkowym profilowaniem kodu z wykorzystaniem platformy przetwarzania Nvidia CUDA. Kompilator CUDA jest dodatkowo używany do optymalizacji czasu przetwarzania z różnymi rozmiarami bloku przetwarzania. Przestrzeń stanów jest przetwarzana wewnętrznie z wykorzystaniem pamięci współdzielonej i przechowywana w pamięci globalnej po pewnej określonej liczbie kroków czasowych. Podejście z okienkowaniem jest używane do przetwarzania wejściowych danych pomiarowych 2D przechowywanych w pamięci globalnej.
3
Content available Small Targets Subpixel Position Estimation using GPU
EN
Position estimation of small targets occurs in numerous applications and for pixel-size targets subpixel resolution can be obtained using advanced image processing algorithms. Subpixel estimation using Center-of-Gravity (Center-of-Mass) give ability of position estimation with magnitude higher resolution in comparison to the conventional, maxima based search method. Application of COG algorithm [3] needs prior detection of targets using morphological filters. In this article is assumed 3x3 window and up to 2x2 pixels excitation by target. Proposed detection method and COG estimation can be processed in parallel what is important for CPU and GPU (Graphics Processing Unit) implementations due to single-pass image processing. Different implementations are compared (full processing of both algorithms; COG calculation driven by detection; full and prefilled results data storage; two implementations of divide operations in COG) for 1024x1024 input images. For GPU implementation CUDA (Compute Unified Device Architecture) is used.
PL
Konieczność detekcji położenia obiektów o małym rozmiarze, rzędu rozmiaru piksela występuje w wielu praktycznych zastosowaniach cyfrowego przetwarzania obrazów. Dla obiektów o tych rozmiarach występują pobudzenia zwykle większej liczby pikseli, co pozwala na estymację położenia z rozdzielczością subpikselową (podpikselową). Możliwe jest wyznaczanie położenia obiektu w takim przypadku z precyzją kilka, kilkanaście razy większą niż w przypadku estymacji opartej na poszukiwaniu położenia maksymalnej wartości sygnału. W tym celu konieczne jest zastosowanie algorytmu estymacji, takiego jak algorytm środka ciężkości wyliczającego estymaty wokół maksymalnej wartości wykrytej za pomocą filtru morfologicznego. Dla obiektów o rozmiarze rzędu piksela (na przetworniku) pobudzenie dotyczy od jednego do czterech pikseli, jednak konieczne jest uwzględnienie niezbędnej separacji pomiędzy potencjalnymi sąsiednimi obiektami. Jeśli nie występuje nałożenie lub stykanie się obiektów, to za pomocą zaproponowanego detektora morfologicznego dla obrazów w odcieniach szarości możliwe jest wykrycie obiektu. Do precyzyjnego wyznaczania położenia wykorzystano zoptymalizowany algorytm środka ciężkości, w którym zmieniono sposób indeksacji wartości pikseli, tak by zmniejszyć ilość operacji arytmetycznych, zarówno mnożeń jak i dodawań. Ponieważ istotna jest efektywna obliczeniowo realizacja algorytmu porównano dwie zasadnicze implementacje w oparciu o CPU i GPU (Graphical Processing Unit). Kluczowym zagadnieniem jest minimalizacja ilości przesyłanych danych w obu implementacjach, między jednostką przetwarzającą a pamięcią przechowującą obraz wejściowy i wyniki (położenia obiektów). Rozwiązanie bazujące na zoptymalizowanym algorytmie detekcji i estymacji położenia pozwala na jednoprzebiegowe przetwarzanie obrazu, bez konieczności magazynowania wyników pośrednich w stosunkowo wolnej pamięci. Zbadano i porównano różne warianty implementacji, wykorzystujące pełne przetwarzanie wszystkich danych za pomocą obu algorytmów, warunkowe przetwarzanie algorytmu środka ciężkości sterowane detekcją, wstępne wypełnianie pamięci wyników oraz dwa warianty implementacji operacji dzielenia wymaganej przez algorytm środka ciężkości. Uzyskane wyniki pokazują, że implementacja z wykorzystaniem GPU była co najmniej o rząd wielkości szybsza w stosunku do CPU. W badaniach wykorzystano pojedynczy rdzeń CPU Q6600 oraz GPU G80 (Geforce 8800 GTS). Zaproponowane rozwiązania pozwalają na implementację w czasie rzeczywistym, gwarantując maksymalny czas przetwarzania. Dla implementacji z warunkowym przetwarzaniem i wstępnym wypełnianiem pamięci wyników uzyskano statystyczne skrócenie czasu przetwarzania. Oba rozwiązania dzielenia dla GPU były tak samo efektywne, ponieważ zasadniczym ograniczeniem systemu jest przepustowość pamięci. Dla obrazów o rozmiarze 1024x1024 pikseli uzyskano przetwarzanie z szybkością ponad 400 klatek na sekundę, a w wariantach bardziej zoptymalizowanych ponad 800 klatek na sekundę, co pozwala to na wykorzystanie GPU także do innych celów, przy systemach pracujących z mniejszą liczbą klatek na sekundę. Abstract: Position estimation of small targets occurs in numerous applications and for pixel-size targets subpixel resolution can be obtained using advanced image processing algorithms. Subpixel estimation using Center-of-Gravity (Center-of-Mass) give ability of position estimation with magnitude higher resolution in comparison to the conventional, maxima based search method. Application of COG algorithm [3] needs prior detection of targets using morphological filters. In this article is assumed 3x3 window and up to 2x2 pixels excitation by target. Proposed detection method and COG estimation can be processed in parallel what is important for CPU and GPU (Graphics Processing Unit) implementations due to single-pass image processing. Different implementations are compared (full processing of both algorithms; COG calculation driven by detection; full and prefilled results data storage; two implementations of divide operations in COG) for 1024x1024 input images. For GPU implementation
4
Content available remote Analysis of efficiency of parallel computing in image processing task
EN
The article deals with parallel computing applied in image processing. An algorithm of edge finding was examined and analysed in tests. Each parallel approach is described in detail and the strengths and weaknesses of each are shown. Different solutions have been implemented to answer the question: "When and how to improve the efficiency of image processing?". One of the conclusions is that there is a need to build parallel image analysing algorithms to enable running them on new computers with a parallel architecture.
PL
Artykuł opisuje przebieg badania dotyczącego zrównoleglania procesów przetwarzania obrazów medycznych. Udzielono odpowiedzi na pytania, czy zrównoleglenie jest przydatne i czy uzyskana efektywność satysfakcjonuje nas w każdym przypadku. Przedstawiono, w jakich sytuacjach takie podejście nie jest wskazane i pogorszy wydajność algorytmu. W badaniu zastosowano algorytmy służące do wykrywania krawędzi w obrazie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.