Two approaches to the asymptotic analysis of a surface wave arising under shear rupture propagation are compared. They differ in Green's functions used to derive asymptotic integral equations. One of them provides a finite stress at the rupture front while the displacement discontinuity at infinity behind the front tends to infinity; the other, quite oppositely, leads to an infinite stress at the front while the displacement discontinuity at infinity is finite. Detailed analysis of the equations of the second approach shows its advantages: the possibility of using important results of fracture mechanics and simplification of the eigenvalue problem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.