This paper expands the classical concept of the continuous convergence of nets of multifunctions introduced by Cao, Reilly and Vamanamurthy in [7]. We introduce some new types of properties of convergence of such nets which guarantee the upper or lower semicontinuity of the limit multifunction. Furthermore, we obtain some analogous results concerning generalized continuity properties of multifunctions.
Let (X, Tx) be a topological space and let (Y, dy) be a metric space. For a function f : X → y denote by C(f) the set of all continuity points of f and by D(f) = X\C(f) the set of all discontinuity points of f. Let C(X,Y) = {f : X → Y; f is continuous}, H(X, Y) = {f: X →Y; D{f) is countable}, H1(X, Y) = {f: X → Y; ∃h ∈c(x,Y) {x; f(x) ≠ h{x)} is countable}, and H2(X, Y) = H(X, Y) ∩ H1(X, Y). In this article we investigate some convergences (pointwise, uniform, quasiuniform, discrete and transfinite) of sequences of functions from H(X, Y), H1(X, Y) and H2(X, Y).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.