Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  quartzites
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This report presents the results of a petrographical, mineralogical (SEM/EDS, XRD) and geochemical (XRF, CV-AAS, ICP-MS) study of gorceixite (barium aluminophosphate) from the abandoned Podwiśniówka mine pit. This site is highlighted by the presence of highly acidic pit pond whose chemistry is strongly affected by the exposed pyrite-bearing zone. The gorceixite occurs in the Upper Cambrian carbonaceous clayey shales, quartzites and tuffs in form of minute accumulations varying from about 0.5 to 100 μm in diameter. These accumulations infill voids, cavities, cracks and partly fissures in the rocks examined. The other minerals of the crandallite series, i.e. florencite and goyazite, can be found only in trace amounts. The gorceixite-bearing rocks, especially carbonaceous clayey shales, are characterized by the highest concentrations of REE reaching 455.09 mg·kg-1. In addition, these rocks are distinctly enriched in light rare earth elements (LREE), with the La/Yb ratio ranging from 24.44 through 36.30. Some of the examined gorceixite accumulations are paragenetically linked to the veined pyrite and nacrite. The latter mineral is indicative of crystallization temperatures of about 200 to 300°C. The coexistence of gorceixite with the veined nacrite or pyrite mineralization and the volcaniclastic rocks, as well as the microtextural features and high concentrations of REE in the gorceixite-bearing parent rocks suggest that this mineral formed as a result of both hydrothermal and volcanic activity in a shallow-marine basin during the late Cambrian.
XX
Niniejszy artykuł przedstawia wyniki badań petrograficznych, mineralogicznych (SEM/EDS, XRD) i geochemicznych (XRF, AAS, ICP-MS) gorceixytu BaAl3H[(OH)6(PO4)2] z nieczynnego kamieniołomu Podwiśniówka. Wyrobisko to częściowo wypełnia zbiornik wodny o bardzo niskim pH, którego chemizm pozostaje pod silnym wpływem odsłoniętej strefy mineralizacji pirytowej. Gorceixyt występuje w górnokambryjskich łupkach ilastych, kwarcytach i tufach w postaci drobnych skupień o średnicy od około 0,5 do 100 m. Wypełniają one pory, próżnie, spękania i częściowo szczeliny w skałach. Pozostałe minerały z grupy crandallitu (florencyt i goyazyt) występują w ilościach śladowych. Skały wzbogacone w gorceixyt, a w szczególności węgliste łupki ilaste, wyróżniają się najwyższą zawartością pierwiastków ziem rzadkich, dochodzącą do 455,09 mgkg–1. W porównaniu z podobnymi stanowiskami na świecie, skały zawierające gorceixyt z kamieniołomu Podwiśniówka są wyraźnie bogatsze w lżejsze pierwiastki ziem rzadkich, wykazując stosunek La/Yb w zakresie od 24,44 do 36,30. Gorceixyt występuje miejscami w postaci paragenetycznych skupień z żyłowym pirytem i nakrytem. Ostatni z wymienionych minerałów jest wskaźnikiem średnich i wysokich temperatur krystalizacji. Współwystępowanie z nakrytem i pirytem, cechy mikroteksturalne oraz wysokie zawartości pierwiastków ziem rzadkich świadczą o genezie gorceixytu i pozostałych minerałów z grupy crandallitu z Podwiśniówki. Powstały one przypuszczalnie w wyniku działalności hydrotermalnej w płytkim basenie morskim w późnym kambrze. Należy jednak podkreślić, że działalność roztworów hydrotermalnych mogła zamaskować inne możliwości pochodzenia Al, Ba, P i pierwiastków ziem rzadkich. W szczególności pierwiastki te mogą być związane z działalnością wulkaniczną, której przejawy w postaci wkładek tufów i bentonitów występują w najstarszej serii skalnej odsłaniającej się w kamieniołomie.
2
Content available remote Clasts of the Liassic gravels (the Polish Uplands) - where do they come from?
EN
The investigated gravels occur in the western part of the Mesosoic margin of the Holy Cross Mountains (MHCM) and in the northeastern part of the Mesosoic margin of the Silesia Upland (MSU), in central and southern Poland. The investigated deposits represent two informal lithostratigraphic units: the Snochowice Beds (in MHCM) - SnB and the Połomia Beds (in MSU) - PmB. The investigated gravels, in both cases, represent the bottom part of the profile of the Early Jurassic deposits. The problem is: where are the source area and the source rocks? Did clasts from MHCM and from MSU Liassic gravels come from the same source rocks or not? Both in SnB and in PmB cases mainly clasts of vein quartz, the quartzites, lydites and jaspers are recognized. Unfortunatelly the main components of the Liassic gravels are represented by the rocks which are insufficient as source indicators. The petrographical analyses have permitted to compare similar rocks from SnB and PmB clasts. The differences between the main groups of similar rocks from PmB and SnB are considerable, especially in the fabric and in the grade of metamorphism of the quartzites. Only few types of rocks - mainly quartz arenites (among the clasts from SnB and PmB) have got similar textural features which were confirmed in the CL analyses. Besides, the author has affirmed that the lithological differentiation of all PmB clastic material is greater than in SnB. Fortunatelly, but only in PmB, fragments of polymictic conglomerates, metamorphic schists, meta-subarcoses, silicified limestones, silicified woods and volcanites were distinguished. Near the southern margins of the Mid-Polish Trough there were 3 areas which could yield clastic material: the Upper Silesia Coal Basin (USCB), the Brno-Upper Silesia Massif (BUSM) and the hypothetical Precarpathian Land. Among the clastic material of PmB and SnB the author hasn't recognized: * any fragments of typical epimetamorphic rocks and Palaeozoic sedimentary rocks which could enable to recognize the BUSM succesion (Bu.a 2000), * any typical clastic material known from the Namurian and Wetphalian conglomerates such as fragments of the gneisses, granitoids, meta-volcanits (Paszkowski et al. 1995; Świerczewska 1995), * any fragments of the black coals and other rocks which could be treated as good indicators for the Carboniferous succesion of the USCB. In the author's opinion only the Precarpathian Land, constituting the Western Outer Carpathian (WOC) basement (Poprawa et al. 2004), could be a source area for the Liassic gravels. This hypothetical land was situated somewhere on the south and consisted of the crystalline basement, covered by a thick succession of the epimetamorphic rocks. During the Early Jurassic these epimetamorphic rocks were the main source of the clastic material for the deposits in the Mid-Polish Trough. Probably since the Callovian, but certainly since the Early Cretaceous, the clastic material deriving from the sea-cordilleras, which were built mainly of epimetamorphic rocks, was deposited in WOC sedimentary basins. Henceforth, the same fragments of rocks (called "exotics") are known from the Liassic gravels in MSU and from the Mesozoic-Palaeogene succession of WOC, especially from the Silesian Unit. In addition, the differences between the SnB and PmB gravels are the effect of some differentiation of source rocks in the Precarpathian Land. The main source rocks for the PmB were metaquartzites with veins of quartz, meta-subarcoses, some detrital limestones, partly silicified and probably a succession of polymictic sandstones and conglomerates, which have got the same components as in PmB. The main source rocks for SnB were only metaquartzites with veins of quartz, but different than in PmB's source. The lydites, jaspers, some quartz arenites which are known from SnB and PmB all come from the same source rocks, and have been eroded during the Early Jurassic time.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.