Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  quantum register
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Informacja kwantowa, której jednostką elementarną jest kubit, jest zawarta w skwantowanym, dyskretnym stanie układu kwantowego. Od informacji klasycznej odróżnia ją charakter probabilistyczny oraz możliwość zakodowania w nielokalnych związkach pomiędzy układami kwantowymi. Kwantowe związki nielokalne, będące powszechną właściwością wszechświata, nazywamy stanami splątanymi. Układ kwantowy jest obiektem podlegającym mechanice kwantowej i jest ograniczony rozmiarowo do skali atomowej. Kubit jest dowolną superpozycją dwóch stanów kwantowych oznaczanych jako |0> i |1>. Odczytując wartość kubitu uzyskuje się z pewnym prawdopodobieństwem wartość 0 lub 1. Nie można przewidzieć która wartość zostanie odczytana. Stan układu kwantowego jest nietrwały, ograniczony przez czas dekoherencji. Czas ten, zdeterminowany szumem i właściwościami układu odczytu, ogranicza skalowalność technologii kwantowych. Kubitem są np. elektron i jego dwuwartościowy spin, foton i jego dwuwartościowy stan polaryzacji, jon z odpowiednio wybranymi dwoma poziomami energetycznymi, ale też molekuły posiadające spin, oscylatory kwantowe czy kwazicząstki. Rejestr kwantowy jest uporządkowanym układem kubitów. Z kubitów i ich układów buduje się logiczne bramki kwantowe. Z kubitów, bramek kwantowych i układów kontrolno- sterujących buduje się systemy kwantowe: komputery, zegary, czujniki, systemy pomiarowe, urządzenia, grawimetry, akcelerometry i wiele innych. Do kontroli kubitów potrzeba jest zaawansowana fotonika, ultrastabilne przestrajalne lasery jednoczęstotliwościowe oraz zaawansowana, najlepiej standaryzowana elektronika.
EN
Quantum information, the unit of which is a qubit, is contained in a quantized, discrete state of a quantum system. What distinguishes it from classical information is its probabilistic nature and the possibility of coding it in non-local relationships between quantum systems. Quantum nonlocal relationships, a common feature of the universe, are called entangled states. A quantum system is an object subject to quantum mechanics and is limited in size to the atomic scale. A qubit is an arbitrary superposition of two quantum states marked as |0> and |1>. When you read the value of a qubit, you get a value of 0 or 1 with some probability. You cannot predict which value will be read. The state of the quantum system is unstable, limited by the time of decoherence. This time, determined by noise and properties of the readout system, limits the scalability of quantum technologies. The qubit is an electron and its bivalent spin, a photon and its bivalent polarization state, an ion with two suitably selected energy levels, but also molecules with spin, quantum oscillators or quasiparticles. A quantum register is an ordered system of qubits. Logical quantum gates are built from qubits and their systems. Quantum systems are built from qubits, quantum gates and measurement and control systems: computers, clocks, sensors, measuring systems, devices, gravimeters, accelerometers, and many others. To control qubits, you need advanced photonics, ultra-stable tuneable single-frequency lasers, and advanced, preferably standardized electronics.
EN
This paper shows a simple computational scheme for determining whether a particular quantum state in a specific form is separable across two given sets of qubits. That is, given a set of qubits partitioned into two, it answers the question: does the original state have a separable form as a tensor product of some two other states, which are set up of the two given subsets of qubits?
PL
Niniejszy artykuł prezentuje prosty algorytm obliczeniowy na określanie, czy dany stan kwantowy, w pewnej szczególnej postaci, jest rozkładalny wg zadanego podziału zbioru kubitów na dwie części. Tak więc, mając podzielony zbiór kubitów na dwa, odpowiadamy na pytanie: czy oryginalny stan kwantowy ma postać rozkładalną jako iloczyn tensorowy pewnych dwóch innych stanów kwantowych, które zostały utworzone w oparciu o kubity z każdego z dwóch w/w podzbiorów?
3
Content available Modelling quantum register disentanglement
EN
Implementing quantum-inspired algorithms on classical computers suffers trade-off between the necessity of saving operational memory and the amount of memory necessary to fully represent a quantum state with possible entanglement. The latter is well known to consume the memory exponentially in the number of qubits. This paper sketches out the idea on how to reduce significantly the amount of necessary memory while distorting the entanglement moderately or not at all. At present, considered are real nonnegative probability amplitudes.
PL
Implementacja kwantowo-inspirowanych algorytmów na komputerach klasycznych musi godzić sprzeczność pomiędzy koniecznością oszczędzania pamięci operacyjnej a ilością pamięci potrzebnej na reprezentację stanu kwantowego z potencjalnym splątaniem. Wiadomo, że to ostatnie pochłania zasoby pamięciowe w ilości wykładniczej wraz ze wzrostem liczby kubitów. Niniejszy artykuł zarysowuje ideę istotnej redukcji potrzebnych zasobów pamięciowych, zniekształcającej przy tym reprezentację oryginalnego stanu tylko nieznacznie lub wcale. W chwili obecnej, rozważane są nieujemne rzeczywiste amplitudy prawdopodobieństwa.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.