Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  quantum neural network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main aim of this paper is to propose Cubic Spline-Quantum Neural Network (CS-QNN) model for analysis and classification of Electroencephalogram (EEG) signals. Experimental data used here were taken from seven different electrodes. The work has been done in three stages, normalization of the signals, extracting the features by Cubic Spline Technique (CST) and classification using Quantum Neural Network (QNN). The simulation results showed that five types of EEG signals were classified with an average accuracy for seven electrodes that is 94.3% when training 70% of the features while with an average accuracy of 92.84% when training 50% of the features.
2
Content available remote A Novel Structure Design and Training Algorithm for Quantum Neural Network
EN
In the structure of original Quantum Neural Network (QNN), only multi-sigmoid transfer function is adopted. Besides that, due to the conflict of the two objective functions in original training algorithm, the training process converges slowly and presents constant variation. In this paper, the QNN with multi-tan-sigmoid transfer function and a novel training algorithm which combines the two objective functions are proposed. Experimental results demonstrate the effectiveness of the structure improvement and the new training algorithm.
PL
W oryginalnym algorytmie kwantowej sieci neuronowej QNN tylko multisigmoidalna funkcja przejścia jest wykorzystywana. W pracy zaprezentowano sieć z multi-tan-sigmoidalną funkcją przejścia z nowym algorytmem uczenia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.