Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  quantum dot synthesis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The present work aimed to synthesize organic and inorganic quantum dots (QDs) and discuss their bioconjugation strategies. Design/methodology/approach: We have prepared 3 different QDs, organic (Carbon [CQDs]) and inorganic (Cadmium Sulphide [CdS] and Zinc Mercury Selenide [ZnHgSe]) quantum dots (QDs) and bioconjugation through in-situ and ex-situ route. These QDs have been characterized through UV-Vis spectroscopy and photoluminescence (PL) emission spectra. Their surface functional groups have been identified through Fourier-transform infrared (FTIR) spectroscopy. The bioconjugated quantum dots were tested through PL emission shift, Agarose electrophoresis, and Bradford assay technique. Findings: Successful synthesized QDs, and their bioconjugation has been confirmed through the previously listed characterization techniques. There are distinct differences in their emission peak, FTIR spectroscopy, and Bradford assay, which confirms their successful bioconjugation. Research limitations/implications: These bioconjugated QDs are difficult to filter from their unconjugated counterpart. Bioconjugation steps are extremely crucial. Practical implications: These QDs could be utilized for highly effective biolabelling and bioimaging in-vivo as well as in-vitro applications. Originality/value: The synthesis has been majorly modified, and the bioconjugation has been prepared in a novel method. There is limited reported work with this much description of the differences in conjugated and unconjugated QDs.
2
Content available remote A review on the progress of ZnSe as inorganic scintillator
EN
Modern scintillator detectors act as an efficient tool for detection and measurement of ionizing radiations. ZnSe based materials have been found to be a promising candidate for scintillation applications. These scintillators show much-needed scintillation efficiency along with advantages such as high thermal and radiation stability, less-toxicity, non-hygroscopicity, emissions in the visible range and small decay time etc. Further, in quantum confinement regime, they show improvement in luminescent properties and size dependent emissions. In this review article, the attempt has been made to trace the progress of ZnSe based materials towards highly efficient quantum dot scintillators. Here, the fundamental process of scintillation has been explained. Factors such as doping, annealing, heavy ion irradiation which affects the scintillation response of ZnSe based scintillators have also been discussed. Method of synthesis plays a key role in optimization of quantum dot properties. Hence, it has been tried to trace the development in methods of synthesis of quantum dots. With optimized synthesis, we can extend applications of these highly efficient quantum dot scintillators for various scientific and industrial applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.