Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pył wulkaniczny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study aimed at examining the impact of concrete curing methods in hot-weather regions on the properties of high-strength green concrete (HSC), which is made from a local industrial waste by-product from the manufacture of light volcanic aggregates called volcanic pumice dust (VPD). The HSC properties are significantly affected by the curing methods, the ambient weather, and the alternative materials to cement. This study aimed to apply three curing methods in a hot-weather region, including the following: (1) the specimens were immersed in a water tank in laboratory conditions, (2) the specimens were cured by covering them with a wet burlap outdoors and spraying the burlap with water twice a day, and (3) the specimens were cured by spraying with water outdoor. Three VPD replacement rates are applied, namely 10%, 20%, and 30% cement mass replacements. In this study, slump tests were conducted and the water absorption, sorptivity, and compressive, indirect tensile, and flexural strengths were investigated to determine the HSC properties. The microstructure of the cement paste was evaluated through thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction. The addition of VPD contributed to reducing the negative impact of hot weather on concrete and improving construction applications. All tests were conducted on hardened concrete at 7, 28, 90, and 180 curing ages. Furthermore, the compressive strength of the immersion curing methods using 10% of VPD surpassed 60 MPa at the 28-day curing age. The residual compressive strength was in the range of 85.6-98.2% when CC and SC were applied compared to IC for all replacement rates at a test age of 180 days. The HSC containing 30% of VPD showed low water sorptivity and water absorption in all curing methods.
2
Content available remote Operational model for atmospheric transport and deposition of air pollution
EN
An assessment of the current state of natural environment affected by air pollution, as well as, forecasts of pro-ecologic, economic and social activities are very often performed using models for atmospheric transport and deposition of air pollutants. In the present paper, we present an operational dispersion model developed at the Institute of Meteorology and Water Management in Warsaw. The basic assumptions and principles of the model are described together with the operational domain and examples of model applications. Two examples of model application are described and discussed here. The first, application is a simulation of the atmospheric transport and deposition of the radioactive isotopes released into the atmosphere during the Chernobyl Accident in 1998. The second example is related to simulation of atmospheric transport of the tracer released into the air during the ETEX experiment. These two examples and previous applications of the model showed that presented dispersion model is fully operational, not only for long term applications, but especially for emergency situations, like nuclear accidents or volcanic eruptions affecting Polish territory
PL
Do oceny aktualnego stanu środowiska naturalnego w związku z rozprzestrzenianiem się zanieczyszczeń atmosferycznych i do związanego z tym prognozowania proekologicznych działań gospodarczych i społecznych powszechnie stosowane są modele transportu zanieczyszczeń w atmosferze. W niniejszej pracy opisano operacyjny model dyspersji opracowany w Instytucie Meteorologii i Gospodarki Wodnej w Warszawie. Omówiono obszar jego obliczeń, a także przykłady jego zastosowania: symulacja transportu atmosferycznego i depozycji substancji promieniotwórczych uwolnionych podczas awarii w Czarnobylu w 1986 roku. Drugi przykład dotyczył symulacji transportu atmosferycznego substancji pasywnej (tracera) podczas eksperymentu ETEX. Te dwa przykłady i poprzednie zastosowania modelu wykazały, że zaprezentowany model dyspersji jest w pełni funkcjonalny nie tylko do zastosowań długoterminowych, ale przede wszystkim w sytuacjach kryzysowych, takich jak wypadki jądrowe lub erupcje wulkaniczne, które mogą wpływać na stan środowiska na terytorium Polski.
EN
After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ~9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ~12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.
PL
W pracy omówiono, wraz z przedstawieniem zasady działania, nowe urządzenie do badania atmosfery w Stacji Polarnej w Hornsundzie – lidar aerozolowy. Przedstawiono 3 przypadki obserwacji podwyż-szonych koncentracji aerozolu atmosferycznego. Dwa zdarzenia jednoznacznie powiązano z erupcjami wulka-nicznymi na Islandii: 2010 Eyjafjallajökull i 2011 Grimsvötn. Posiłkowano się przy tym wynikami obliczeń trajektorii wstecznych napływu mas powietrza w rejon Hornsundu, otrzymanymi z modelu HYSPLIT. Trzeci przypadek, ze względu na dystans i opóźnienie czasu obserwacji w stosunku do erupcji, może być tylko zasugerowany jako pył wulkaniczny Saryczewa (2009) z Wysp Kurylskich. Przedstawiono możliwości lidaru i jego potencjalne zastoso-wanie do doświadczalnej weryfikacji modeli transportu mas powietrza.
EN
The paper presents principles of operation of the new device for atmospheric monitoring at Polar Station Hornsund – aerosol lidar. There are 3 case studies of higher aerosol episodes. Two of them were clearly linked as eruptions on Iceland i.e.: 2010 EyjafjallajökulI and 2011 Grimsvötn. Results were support by backward trajectories simulation of air masses inflow to Hornsund area by HYSPLIT model. The third case, in respect to far distance and long time separation between the observation and the eruption, can be only supposed as volcanic dust of Sarychev Peak (2009) from Kuril Islands. There are presented capabilities of the lidar and its potential application for experimental verification of air masses transport models.
5
Content available remote Obserwacje pyłu wulkanicznego nad Polską w kwietniu 2010 roku
PL
Celem pracy jest analiza napływu pyłu wulkanicznego nad obszar Polski w połowie kwietnia 2010 r. Wybuch wulkanu Eyjafjoll na Islandii 14 kwietnia spowodował emisję pyłów i gazów do atmosfery, które przesuwały się w kierunku zachodniej i środkowej części Europy. Analiza trajektorii wstecznych pokazała, że pył wulkaniczny pojawił się nad Polską 16 kwietnia. Potwierdziły to obrazy satelitarne wykonane z kompozycji barwnej kanałów w obszarze widzialnym, środkowej oraz dalekiej podczerwieni. Badania własności optycznych pyłów wulkanicznych przeprowadzono w Laboratorium Transferu Radiacyjnego Instytutu Geofizyki UW w Warszawie oraz na Stacji Transferu Radiacyjnego SolarAOT w Strzyżowie na Podkarpaciu. Pomiary prowadzone przy użyciu ceilometru pokazały występowanie aerozolu wulkanicznego w postaci 2-3 warstw do wysokości ok. 5 km nad powierzchnią ziemi. Wyznaczony na podstawie tych pomiarów współczynnik ekstynkcji aerozolu wynosił maksymalnie 0,02-0,03 km-1 (nad ranem 17 kwietnia) dla długości fali 1064 nm. Na ogół jednak przyjmował on znacznie niższe wartości. Obliczona na podstawie profilu ekstynkcji grubość optyczna pyłu wulkanicznego była również niska. Jedynie nad ranem 17 kwietnia osiągała wartości 0,03 w 1064 nm. Niewielkie zawartości pyłu wulkanicznego w pionowej kolumnie atmosfery potwierdzają również pomiary fotometrami słonecznymi w Warszawie i Strzyżowie. W okresie od 17 do 18 kwietnia notowano małe wartość całkowitej grubość optycznej aerozolu, mieszczące się w przedziale 0,11-0,16 (dla 500 nm), podczas gdy średnia klimatyczna wartość grubość optycznej aerozolu w kwietniu wynosi ok. 0,25.
EN
Optical properties of a volcanic aerosol obtained by direct observations from Radiation Transfer Observatory at the Institute of Geophysics University of Warsaw and Aerosol and Radiation Observatory SolarAOT in Strzyżów (south eastern part of Poland) together with Meteosat Second Generation observations are discussed. Aerosol optical properties measured by the Multi-Filter Rotating Shadowband Radiometer (Model MFR-7), Microtops sun photometer, and CHM-15K ceilometer between 14 and 23 April 2010 are investigated . Back-trajectories calculated for 16 and 17 April show advection of air masses from Iceland in the lower and the middle troposphere. Satellite observations performed by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard of the MSG2 confirmed ash over Poland. Unfortunately, cloudy conditions during this day prevented remote observations of the atmosphere's optical properties from the ground. However, surface observations performed on 17 April by the ceilometer indicate volcanic ash layers. At around midnight first ash layer appeared at 5 km. One hour later the second layer between 3 and 4 km was observed. An aerosol layer between 0.5 and 2 km was also measured, however it is difficult to determine the type of remotely sensed particles. After sunset very weak ash clouds were recorded between top of the boundary layer and 4 km. During the day those ash layers were not measured, probably due to a poor signal to noise ratio of the ceilometer's signal. Extinction coefficient for volcanic ash was estimated as 0.02-0.03 km-1 and aero-sol optical thickness was calculated about 0.03 at 1064 nm. Sun photometers' observations at both stations show small total aerosol optical thickness which varies between 0.11 and 0.16 (at 500 nm) during 17 and 18 April 2010. However, the mean aerosol optical thickness for April is about 0.25.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.